Controlled Separation of Skyrmions and Antiskyrmions by Kitaev Interaction

被引:0
|
作者
Guan, Shuhua [1 ,2 ]
Duan, Wenhui [3 ,4 ,5 ]
Zou, Xiaolong [1 ,2 ]
机构
[1] Tsinghua Univ, Shenzhen Geim Graphene Ctr, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Inst Mat Res, Tsinghua Shenzhen Int Grad Sch, Shenzhen Key Lab Adv Layered Mat Value added Appl, Shenzhen 518055, Peoples R China
[3] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[5] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
skyrmion; antiskyrmion; Kitaev interaction; current; dynamics; MAGNETIC SKYRMIONS; DYNAMICS;
D O I
10.1021/acs.nanolett.4c04194
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As topological quasi-particles in magnetic materials, skyrmions and antiskyrmions show potential in spintronics for information storage and computing. However, effectively controlling and separating these entities remain significantly challenging. Here, we demonstrate that anisotropic Kitaev exchange can distinctly influence the static and dynamic behaviors for skyrmions and antiskyrmions, thus aiding their manipulation and separation. Employing the monolayer frustrated magnet NiBr2 as a model system, we construct a magnetic field-strain phase diagram to explore the strain-controlled stability of these topological structures. The introduction of the Kitaev term breaks the energy degeneracy among magnetic structures with various helicities, leading to a translation-rotation mode transition with an increase in current. Importantly, due to their different rotational symmetries, the skyrmion and antiskyrmion show distinct critical behaviors and rotational dynamics, which are governed by the Kitaev parameters. These phenomena enable the design of two proof-of-concept spintronics devices, i.e., a skyrmion separator and a non-gate logic unit.
引用
收藏
页码:15076 / 15084
页数:9
相关论文
共 50 条
  • [41] Increased lifetime of metastable skyrmions by controlled doping
    Birch, M. T.
    Takagi, R.
    Seki, S.
    Wilson, M. N.
    Kagawa, F.
    Stefancic, A.
    Balakrishnan, G.
    Fan, R.
    Steadman, P.
    Ottley, C. J.
    Crisanti, M.
    Cubitt, R.
    Lancaster, T.
    Tokura, Y.
    Hatton, P. D.
    PHYSICAL REVIEW B, 2019, 100 (01)
  • [42] Interaction-controlled HPLC for block copolymer analysis and separation
    1600, American Chemical Society, Columbus, United States (126):
  • [43] Interaction-controlled HPLC for block copolymer analysis and separation
    Park, S
    Park, I
    Chang, T
    Ryu, CY
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (29) : 8906 - 8907
  • [44] Uhlmann phases in the Kitaev chain with NNN hopping interaction
    Liu, Sheng
    Hou, Qi-Zhe
    PHYSICA SCRIPTA, 2024, 99 (01)
  • [45] Light-controlled skyrmions and torons as reconfigurable particles
    Sohn, Hayley R. O.
    Liu, Changda D.
    Wang, Yuhan
    Smalyukh, Ivan I.
    OPTICS EXPRESS, 2019, 27 (20) : 29055 - 29068
  • [46] Controlled creation and stability of kπ skyrmions on a discrete lattice
    Hagemeister, Julian
    Siemens, Ansgar
    Rozsa, Levente
    Vedmedenko, Elena Y.
    Wiesendanger, Roland
    PHYSICAL REVIEW B, 2018, 97 (17)
  • [47] Spontaneous organization and phase separation of skyrmions in chiral active matter
    Li, Zhong-Yi
    Zhang, De-Qing
    Lin, Shao-Zhen
    Gozdz, Wojciech T.
    Li, Bo
    SOFT MATTER, 2022, 18 (38) : 7348 - 7359
  • [48] Analytical modeling of the interaction between skyrmions and extended defects
    Gonzalez-Gomez, Leonardo
    Castell-Queralt, Josep
    Del-Valle, Nuria
    Sanchez, Alvaro
    Navau, Carles
    PHYSICAL REVIEW B, 2019, 100 (05)
  • [49] Influence of the dipolar interaction in the creation of skyrmions in coupled nanodisks
    Vigo-Cotrina, H.
    Guimaraes, A. P.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 489
  • [50] Elongation of skyrmions by Dzyaloshinskii–Moriya interaction in helimagnetic films
    Ying-Ying Dai
    Han Wang
    Teng Yang
    Adekunle O. Adeyeye
    Zhi-Dong Zhang
    Rare Metals, 2022, 41 : 3150 - 3159