Controlled Separation of Skyrmions and Antiskyrmions by Kitaev Interaction

被引:0
|
作者
Guan, Shuhua [1 ,2 ]
Duan, Wenhui [3 ,4 ,5 ]
Zou, Xiaolong [1 ,2 ]
机构
[1] Tsinghua Univ, Shenzhen Geim Graphene Ctr, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Inst Mat Res, Tsinghua Shenzhen Int Grad Sch, Shenzhen Key Lab Adv Layered Mat Value added Appl, Shenzhen 518055, Peoples R China
[3] Tsinghua Univ, Dept Phys, State Key Lab Low Dimens Quantum Phys, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Inst Adv Study, Beijing 100084, Peoples R China
[5] Frontier Sci Ctr Quantum Informat, Beijing 100084, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
skyrmion; antiskyrmion; Kitaev interaction; current; dynamics; MAGNETIC SKYRMIONS; DYNAMICS;
D O I
10.1021/acs.nanolett.4c04194
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As topological quasi-particles in magnetic materials, skyrmions and antiskyrmions show potential in spintronics for information storage and computing. However, effectively controlling and separating these entities remain significantly challenging. Here, we demonstrate that anisotropic Kitaev exchange can distinctly influence the static and dynamic behaviors for skyrmions and antiskyrmions, thus aiding their manipulation and separation. Employing the monolayer frustrated magnet NiBr2 as a model system, we construct a magnetic field-strain phase diagram to explore the strain-controlled stability of these topological structures. The introduction of the Kitaev term breaks the energy degeneracy among magnetic structures with various helicities, leading to a translation-rotation mode transition with an increase in current. Importantly, due to their different rotational symmetries, the skyrmion and antiskyrmion show distinct critical behaviors and rotational dynamics, which are governed by the Kitaev parameters. These phenomena enable the design of two proof-of-concept spintronics devices, i.e., a skyrmion separator and a non-gate logic unit.
引用
收藏
页码:15076 / 15084
页数:9
相关论文
共 50 条
  • [31] Interaction and collision of skyrmions in chiral antiferromagnets
    Theodorou, George
    Barton-Singer, Bruno
    Komineas, Stavros
    SCIPOST PHYSICS, 2025, 18 (01):
  • [32] Nanoscale Characteristics of a Room-Temperature Coexisting Phase of Magnetic Skyrmions and Antiskyrmions for Skyrmion-Antiskyrmion-Based Spintronic Applications
    Shimizu, Daigo
    Nagase, Tomoki
    So, Yeong-Gi
    Kuwahara, Makoto
    Ikarashi, Nobuyuki
    Nagao, Masahiro
    ACS APPLIED NANO MATERIALS, 2022, 5 (09) : 13519 - 13528
  • [33] Effects of Kitaev interaction on magnetic order and anisotropy
    Li, Lianchuang
    Zhang, Binhua
    Chen, Zefeng
    Xu, Changsong
    Xiang, Hongjun
    PHYSICAL REVIEW B, 2024, 110 (21)
  • [34] Magnetostatic interaction between two bubble skyrmions
    Castro, M. A.
    Mancilla-Almonacid, D.
    Valdivia, J. A.
    Allende, S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (17)
  • [35] Field-controlled dynamics of skyrmions and monopoles
    Tai, Jung-Shen B.
    Hess, Andrew J.
    Wu, Jin-Sheng
    Smalyukh, Ivan I.
    SCIENCE ADVANCES, 2024, 10 (04)
  • [36] Fermion exchange interaction between magnetic Skyrmions
    Perapechka, I.
    Shnir, Ya.
    PHYSICAL REVIEW D, 2019, 99 (12)
  • [37] THE SHORT-RANGE INTERACTION BETWEEN SKYRMIONS
    KUTSCHERA, M
    PETHICK, CJ
    NUCLEAR PHYSICS A, 1985, 440 (04) : 670 - 684
  • [38] Interaction of propagating spin waves with extended skyrmions
    Mansell, Rhodri
    Schaffers, Taddaus
    Hollander, Rasmus B.
    Qin, Huajun
    van Dijken, Sebastiaan
    APPLIED PHYSICS LETTERS, 2022, 121 (24)
  • [39] Interaction of isolated skyrmions with point and linear defects
    Navau, Carles
    Del-Valle, Nuria
    Sanchez, Alvaro
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2018, 465 : 709 - 715
  • [40] Controlled motion of skyrmions in a magnetic antidot lattice
    Feilhauer, J.
    Saha, S.
    Tobik, J.
    Zelent, M.
    Heyderman, L. J.
    Mruczkiewicz, M.
    PHYSICAL REVIEW B, 2020, 102 (18)