Adaptive Multiscale Slimming Network Learning for Remote Sensing Image Feature Extraction

被引:0
|
作者
Ye, Dingqi [1 ,2 ]
Peng, Jian [2 ,3 ]
Guo, Wang [1 ,2 ]
Li, Haifeng [1 ,2 ]
机构
[1] Cent South Univ, Sch Geosci & Info Phys, Changsha 410083, Peoples R China
[2] Xiangjiang Lab, Changsha 410205, Peoples R China
[3] Tsinghua Univ, Dept Precis Instrument, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Training; Remote sensing; Adaptation models; Computer architecture; Kernel; Computational modeling; Accuracy; Image coding; Representation learning; Compact representation learning; multiscale information augmentation learning; parameter-scale overload; remote sensing image (RSI) feature extraction; BENCHMARK;
D O I
10.1109/TGRS.2024.3490666
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Effective feature representation is pivotal in numerous remote sensing image (RSI) interpretation tasks. Notably, a distinct attribute of RSIs is their inclination toward multiscale feature dependence. Previous research predominantly focuses on designing intricate and complex networks or modules to encapsulate rich multiscale features. However, these approaches compromise on either the model's compactness or its representational efficacy, thereby constraining the practical deployment of remote sensing technologies, particularly in limited-capacity environments like small-scale devices or on-orbit satellites. In this study, we explore the problem of how to augment the diversity of encoded features while avoiding heavy parameter scale growth in deep convolutional neural networks (CNNs). We proposed an adaptive multiscale framework RISV which presents two key features: 1) rich scale information: during training, RISV decomposes each convolutional layer into various-sized convolutions, extracting multiscale characteristics; and 2) small model volume: RISV incorporates a differentiable elect layer after each convolutional layer, adaptively calculating and polarizing channel importance during learning. After training, the added convolution kernel and the significant channels selected by the elect layer will be linearly equivalent merged, minimizing the impact of pruning on the model's feature extraction capability. Different from traditional model slimming, it focused on a slimmed-down network while enhancing the representation of multiscale features in RSIs. Versatile and adaptable across various model frameworks like VGG and ResNet. Experimental results demonstrate that our methodology not only preserves accuracy across standard skeletal frameworks but also attains a compression ratio exceeding 80%, surpassing the baseline by an average of 40%. Furthermore, the application of GradCAM on the NWPU dataset reveals our method's proficiency in acquiring detailed and accurate subject information from RSIs.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Unsupervised Deep Feature Extraction for Remote Sensing Image Classification
    Romero, Adriana
    Gatta, Carlo
    Camps-Valls, Gustau
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (03): : 1349 - 1362
  • [32] Novel feature extraction method for hyperspectral remote sensing image
    Liu, Chunhong
    Zhao, Huijie
    MIPPR 2007: MULTISPECTRAL IMAGE PROCESSING, 2007, 6787
  • [33] MSHFormer: A Multiscale Hybrid Transformer Network With Boundary Enhancement for VHR Remote Sensing Image Building Extraction
    Zhu, Panpan
    Song, Zhichao
    Liu, Jiale
    Yan, Jiazheng
    Luo, Xiaobo
    Tao, Yuxiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [34] Multiscale and Adaptive Morphology for Remote Sensing Image Segmentation of Vegetation Areas
    Li Xinna
    Wang Xiaopeng
    Wei Tongyi
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (24)
  • [35] A Remote Sensing Method for Crop Mapping Based on Multiscale Neighborhood Feature Extraction
    Wu, Yongchuang
    Wu, Yanlan
    Wang, Biao
    Yang, Hui
    REMOTE SENSING, 2023, 15 (01)
  • [36] MIGN: Multiscale Image Generation Network for Remote Sensing Image Semantic Segmentation
    Nie, Jie
    Wang, Chenglong
    Yu, Shusong
    Shi, Jinjin
    Lv, Xiaowei
    Wei, Zhiqiang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5601 - 5613
  • [37] Efficient Adaptive Feature Fusion Network for Remote-Sensing Image Super-Resolution
    Hao, Shuai
    Liu, Shuai
    Jia, Xu
    Lu, Huchuan
    He, You
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 3089 - 3093
  • [38] Scene-Adaptive Remote Sensing Image Super-Resolution Using a Multiscale Attention Network
    Zhang, Shu
    Yuan, Qiangqiang
    Li, Jie
    Sun, Jing
    Zhang, Xuguo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (07): : 4764 - 4779
  • [39] Multimodal Contrastive Learning for Remote Sensing Image Feature Extraction Based on Relaxed Positive Samples
    Zhang, Zhenshi
    Li, Qiujun
    Jing, Wenxuan
    He, Guangjun
    Zhu, Lili
    Gao, Shijuan
    SENSORS, 2024, 24 (23)
  • [40] A Multiscale Incremental Learning Network for Remote Sensing Scene Classification
    Ye, Zhen
    Zhang, Yu
    Zhang, Jinxin
    Li, Wei
    Bai, Lin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15