Adaptive Multiscale Slimming Network Learning for Remote Sensing Image Feature Extraction

被引:0
|
作者
Ye, Dingqi [1 ,2 ]
Peng, Jian [2 ,3 ]
Guo, Wang [1 ,2 ]
Li, Haifeng [1 ,2 ]
机构
[1] Cent South Univ, Sch Geosci & Info Phys, Changsha 410083, Peoples R China
[2] Xiangjiang Lab, Changsha 410205, Peoples R China
[3] Tsinghua Univ, Dept Precis Instrument, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Training; Remote sensing; Adaptation models; Computer architecture; Kernel; Computational modeling; Accuracy; Image coding; Representation learning; Compact representation learning; multiscale information augmentation learning; parameter-scale overload; remote sensing image (RSI) feature extraction; BENCHMARK;
D O I
10.1109/TGRS.2024.3490666
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Effective feature representation is pivotal in numerous remote sensing image (RSI) interpretation tasks. Notably, a distinct attribute of RSIs is their inclination toward multiscale feature dependence. Previous research predominantly focuses on designing intricate and complex networks or modules to encapsulate rich multiscale features. However, these approaches compromise on either the model's compactness or its representational efficacy, thereby constraining the practical deployment of remote sensing technologies, particularly in limited-capacity environments like small-scale devices or on-orbit satellites. In this study, we explore the problem of how to augment the diversity of encoded features while avoiding heavy parameter scale growth in deep convolutional neural networks (CNNs). We proposed an adaptive multiscale framework RISV which presents two key features: 1) rich scale information: during training, RISV decomposes each convolutional layer into various-sized convolutions, extracting multiscale characteristics; and 2) small model volume: RISV incorporates a differentiable elect layer after each convolutional layer, adaptively calculating and polarizing channel importance during learning. After training, the added convolution kernel and the significant channels selected by the elect layer will be linearly equivalent merged, minimizing the impact of pruning on the model's feature extraction capability. Different from traditional model slimming, it focused on a slimmed-down network while enhancing the representation of multiscale features in RSIs. Versatile and adaptable across various model frameworks like VGG and ResNet. Experimental results demonstrate that our methodology not only preserves accuracy across standard skeletal frameworks but also attains a compression ratio exceeding 80%, surpassing the baseline by an average of 40%. Furthermore, the application of GradCAM on the NWPU dataset reveals our method's proficiency in acquiring detailed and accurate subject information from RSIs.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Remote sensing image feature extraction and classification based on contrastive learning method
    Mu X.-D.
    Bai K.
    You X.-A.
    Zhu Y.-Q.
    Chen X.-B.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2021, 29 (09): : 2222 - 2234
  • [12] An Attention-Enhanced End-to-End Discriminative Network With Multiscale Feature Learning for Remote Sensing Image Retrieval
    Hou, Dongyang
    Wang, Siyuan
    Tian, Xueqing
    Xing, Huaqiao
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15 : 8245 - 8255
  • [13] Clustering Feature Constraint Multiscale Attention Network for Shadow Extraction From Remote Sensing Images
    Xie, Yakun
    Feng, Dejun
    Shen, Xingyu
    Liu, Yangge
    Zhu, Jun
    Hussain, Tanveer
    Baik, Sung Wook
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [14] Multiscale Multiinteraction Network for Remote Sensing Image Captioning
    Wang, Yong
    Zhang, Wenkai
    Zhang, Zhengyuan
    Gao, Xin
    Sun, Xian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 2154 - 2165
  • [15] Heterogeneous feature learning network for multimodal remote sensing image collaborative classification
    Yu, Xuchu
    Xue, Zhixiang
    Yang, Guopeng
    Yu, Anzhu
    Liu, Bing
    Hu, Qingfeng
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (15) : 4983 - 5007
  • [16] A multiscale bidirectional fuzzy-driven learning network for remote sensing image segmentation
    Chong, Qianpeng
    Xu, Jindong
    Ding, Yang
    Dai, Zhe
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (21) : 6860 - 6881
  • [17] Multiscale feature U-Net for remote sensing image segmentation
    Wei, Youhua
    Liu, Xuzhi
    Lei, Jingxiong
    Yue, Ruihan
    Feng, Jun
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (01)
  • [18] Remote Sensing Image Scene Classification Using Multiscale Feature Fusion Covariance Network With Octave Convolution
    Bai, Lin
    Liu, Qingxin
    Li, Cuiling
    Ye, Zhen
    Hui, Meng
    Jia, Xiuping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [19] Remote Sensing Image-Matching Network Based on Multiscale Feature Fusion and Importance Ranking Loss
    Chen Peng
    Bao Beiyuan
    Chen Xu
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (18)
  • [20] Dual-Attention-Guided Multiscale Feature Aggregation Network for Remote Sensing Image Change Detection
    Ren, Hongjin
    Xia, Min
    Weng, Liguo
    Hu, Kai
    Lin, Haifeng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 4899 - 4916