Realizations of Su-Schrieffer-Heeger (SSH) edge states in two-dimensional hydrocarbon systems

被引:0
|
作者
Song, Yuxuan [1 ]
Liu, Xibin [1 ]
Zhou, Meng [1 ]
Guan, Lixiu [1 ]
Liu, Xiaobiao [2 ]
Li, Linyang [1 ]
机构
[1] Hebei Univ Technol, Sch Sci, Tianjin 300401, Peoples R China
[2] Henan Agr Univ, Sch Sci, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金;
关键词
Su-Schrieffer-Heeger model; Dumbbell carbon monolayer; Weak topological insulator; Line defect; MOLECULAR-DYNAMICS; GRAPHENE; SIMULATIONS; SOLITONS; PHASE;
D O I
10.1016/j.ssc.2024.115673
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Su-Schrieffer-Heeger (SSH) model of one-dimensional (1D) diatomic and four-atom chains, exhibit a topological phase transition characterized by the Zak phase. However, a challenge arises from the inherent difficulty of maintaining strong structural stability in real 1D nanostructures. Here, we show how to realize periodic 1D chains, reminiscent of the SSH model, in a two-dimensional (2D) system. These chains form a quasi-1D chain topological insulator (CTI) where the interchain coupling can be neglected. Based on first-principles calculations, we proposed that such CTIs can be realized in dumbbell (DB) C40H14 and DB C40H12 monolayers. The monolayers are CTIs, with a type of weak topological state, and the topological phase transition can be achieved by unit cell transformation or the application of 2D strain. Furthermore, increasing the number of DB C10H4 rings can enlarge the distance between the chains, corresponding to line defects within the monolayer, providing a possible strategy for experimental synthesis.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Edge state behavior of interacting bosons in a Su-Schrieffer-Heeger lattice
    Ghosh, A.
    Martin, A. M.
    PHYSICAL REVIEW RESEARCH, 2025, 7 (01):
  • [42] Topological edge solitons and their stability in a nonlinear Su-Schrieffer-Heeger model
    Ma, Y-P
    Susanto, H.
    PHYSICAL REVIEW E, 2021, 104 (05)
  • [43] Mechanical Su-Schrieffer-Heeger quasicrystal: Topology, localization, and mobility edge
    Miranda, D. A.
    Antao, T. V. C.
    Peres, N. M. R.
    PHYSICAL REVIEW B, 2024, 109 (19)
  • [44] General bounded corner states in the two-dimensional Su-Schrieffer-Heeger model with intracellular next-nearest-neighbor hopping
    Xu, Xun-Wei
    Li, Yu-Zeng
    Liu, Zheng-Fang
    Chen, Ai-Xi
    PHYSICAL REVIEW A, 2020, 101 (06)
  • [45] Topological edge states in the Su-Schrieffer-Heeger model subject to balanced particle gain and loss
    Klett, Marcel
    Cartarius, Holger
    Dast, Dennis
    Main, Joerg
    Wunner, Guenter
    EUROPEAN PHYSICAL JOURNAL D, 2018, 72 (12):
  • [46] Topological edge states in the Su-Schrieffer-Heeger model subject to balanced particle gain and loss
    Marcel Klett
    Holger Cartarius
    Dennis Dast
    Jörg Main
    Günter Wunner
    The European Physical Journal D, 2018, 72
  • [47] Topological edge states in Su-Schrieffer-Heeger chain via non-Hermitian coupling
    Zhou, Xingping
    Jia, Shiyin
    Zhan, Peng
    PHYSICS LETTERS A, 2023, 487
  • [48] Transmissible topological edge states based on Su-Schrieffer-Heeger photonic crystals with defect cavities
    Yan, Qiuchen
    Ma, Rui
    Lyu, Qinghong
    Hu, Xiaoyong
    Gong, Qihuang
    NANOPHOTONICS, 2024, 13 (08) : 1397 - 1406
  • [49] Multiple polaritonic edge states in a Su-Schrieffer-Heeger chain strongly coupled to a multimode cavity
    Allard, Thomas F.
    Weick, Guillaume
    PHYSICAL REVIEW B, 2023, 108 (24)
  • [50] Experiments with nonlinear topological edge states in static and dynamically modulated Su-Schrieffer-Heeger arrays
    Kartashov, Y., V
    Ivanov, S. K.
    Zhang, Y. Q.
    Zhuravitskii, S. A.
    Skryabin, N. N.
    Dyakonov, I., V
    Kalinkin, A. A.
    Kulik, S. P.
    Kompanets, V. O.
    Chekalin, S., V
    Zadkov, V. N.
    PHYSICS-USPEKHI, 2024, 67 (11) : 1095 - 1110