Realizations of Su-Schrieffer-Heeger (SSH) edge states in two-dimensional hydrocarbon systems

被引:0
|
作者
Song, Yuxuan [1 ]
Liu, Xibin [1 ]
Zhou, Meng [1 ]
Guan, Lixiu [1 ]
Liu, Xiaobiao [2 ]
Li, Linyang [1 ]
机构
[1] Hebei Univ Technol, Sch Sci, Tianjin 300401, Peoples R China
[2] Henan Agr Univ, Sch Sci, Zhengzhou 450002, Peoples R China
基金
中国国家自然科学基金;
关键词
Su-Schrieffer-Heeger model; Dumbbell carbon monolayer; Weak topological insulator; Line defect; MOLECULAR-DYNAMICS; GRAPHENE; SIMULATIONS; SOLITONS; PHASE;
D O I
10.1016/j.ssc.2024.115673
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The Su-Schrieffer-Heeger (SSH) model of one-dimensional (1D) diatomic and four-atom chains, exhibit a topological phase transition characterized by the Zak phase. However, a challenge arises from the inherent difficulty of maintaining strong structural stability in real 1D nanostructures. Here, we show how to realize periodic 1D chains, reminiscent of the SSH model, in a two-dimensional (2D) system. These chains form a quasi-1D chain topological insulator (CTI) where the interchain coupling can be neglected. Based on first-principles calculations, we proposed that such CTIs can be realized in dumbbell (DB) C40H14 and DB C40H12 monolayers. The monolayers are CTIs, with a type of weak topological state, and the topological phase transition can be achieved by unit cell transformation or the application of 2D strain. Furthermore, increasing the number of DB C10H4 rings can enlarge the distance between the chains, corresponding to line defects within the monolayer, providing a possible strategy for experimental synthesis.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Topological valley crystals in a photonic Su-Schrieffer-Heeger (SSH) variant
    Yu, Z.
    Lin, H.
    Zhou, R.
    Li, Z.
    Mao, Z.
    Peng, K.
    Liu, Y.
    Shi, X.
    JOURNAL OF APPLIED PHYSICS, 2022, 132 (16)
  • [22] Quench dynamics of edge states in a finite extended Su-Schrieffer-Heeger system
    Ghosh A.
    Martin A.M.
    Majumder S.
    Phys. Rev. E, 2023, 3
  • [23] Analytic expressions for topologically protected edge states in Su-Schrieffer-Heeger model
    Cheng, Jinhong
    Zhao, Qianru
    Zheng, Yuqing
    Lin, Tie
    Meng, Xiangjian
    Shen, Hong
    Wang, Xudong
    Wang, Jianlu
    Chu, Junhao
    SOLID STATE COMMUNICATIONS, 2022, 357
  • [24] Existence and characterization of edge states in an acoustic trimer Su-Schrieffer-Heeger model
    Sougleridis, I. Ioannou
    Anastasiadis, A.
    Richoux, O.
    Achilleos, V.
    Theocharis, G.
    Pagneux, V.
    Diakonos, F. K.
    PHYSICAL REVIEW B, 2024, 110 (17)
  • [25] One-dimensional extended Su-Schrieffer-Heeger models as descendants of a two-dimensional topological model
    Du, Tao
    Li, Yue-Xun
    Lu, He-Lin
    Zhang, Hui
    NEW JOURNAL OF PHYSICS, 2024, 26 (02):
  • [26] Integrable systems related to Su-Schrieffer-Heeger lattices
    Carstea, A. S.
    CHAOS SOLITONS & FRACTALS, 2009, 42 (02) : 923 - 930
  • [27] Tunable topological edge modes in Su-Schrieffer-Heeger arrays
    Chaplain, G. J.
    Gliozzi, A. S.
    Davies, B.
    Urban, D.
    Descrovi, E.
    Bosia, F.
    Craster, R. V.
    APPLIED PHYSICS LETTERS, 2023, 122 (22)
  • [28] Peierls/Su-Schrieffer-Heeger polarons in two dimensions
    Zhang, Chao
    Prokof'ev, Nikolay, V
    Svistunov, Boris, V
    PHYSICAL REVIEW B, 2021, 104 (03)
  • [29] Topological edge breathers in a nonlinear Su-Schrieffer-Heeger lattice
    Johansson, Magnus
    PHYSICS LETTERS A, 2023, 458
  • [30] Boundary Effect on In-gap Edge States in Nonlocal Su-Schrieffer-Heeger model
    Alisepahi, Amir Rajabpoor
    Ma, Jihong
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS XVIII, 2024, 12951