Machine Learning for Predicting Chemical Potentials of Multifunctional Organic Compounds in Atmospherically Relevant Solutions

被引:0
|
作者
Hyttinen, Noora [1 ]
Pihlajamäki, Antti [2 ]
Häkkinen, Hannu [1 ,2 ]
机构
[1] Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä,FI-40014, Finland
[2] Department of Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä,FI-40014, Finland
来源
Journal of Physical Chemistry Letters | 2022年 / 13卷 / 42期
关键词
36;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:9928 / 9933
相关论文
共 50 条
  • [1] Machine Learning for Predicting Chemical Potentials of Multifunctional Organic Compounds in Atmospherically Relevant Solutions
    Hyttinen, Noora
    Pihlajamaki, Antti
    Hakkinen, Hannu
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2022, : 9928 - 9933
  • [2] Machine Learning Modeling of Environmentally Relevant Chemical Reactions for Organic Compounds
    Zhang, Kai
    Zhang, Huichun
    ACS ES&T WATER, 2022, 4 (03): : 773 - 783
  • [3] Predicting Secondary Organic Aerosol Enhancement in the Presence of Atmospherically Relevant Organic Particles
    Ye, Jianhuai
    Van Rooy, Paul
    Adam, Cullen H.
    Jeong, Cheol-Heon
    Urch, Bruce
    Cocker, David R., III
    Evans, Greg J.
    Chan, Arthur W. H.
    ACS EARTH AND SPACE CHEMISTRY, 2018, 2 (10): : 1035 - 1046
  • [4] Machine learning for predicting lifespan-extending chemical compounds
    Barardo, Diogo G.
    Newby, Danielle
    Thornton, Daniel
    Ghafourian, Taravat
    de Magalhaes, Joao Pedro
    Freitas, Alex A.
    AGING-US, 2017, 9 (07): : 1721 - 1737
  • [5] Utilizing Machine Learning Models for Predicting Diamagnetic Susceptibility of Organic Compounds
    Zhang, Yining
    Xing, Sijie
    Wei, Lai
    Shi, Tongfei
    ACS OMEGA, 2024, 9 (12): : 14368 - 14374
  • [6] Combined experimental and theoretical studies of photolysis of atmospherically relevant organic compounds in various phases
    Blair, Sandra L.
    Gerber, R. Benny
    Epstein, Scott A.
    Hinks, Mallory L.
    Lignell, Hanna
    Nizkorodov, Sergey A.
    Romonosky, Dian E.
    Shemesh, Dorit
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [7] Predicting antioxidant activity of compounds based on chemical Predicting antioxidant activity of compounds based on chemical structure using machine learning methods structure using machine learning methods
    Jung, Jinwoo
    Moon, Jeon-Ok
    Ahn, Song Ih
    Lee, Haeseung
    KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY, 2024, 28 (06): : 527 - 537
  • [8] Machine Learning for Ionization Potentials and Photoionization Cross Sections of Volatile Organic Compounds
    Stewart, Matthew P.
    Martin, Scot T.
    ACS EARTH AND SPACE CHEMISTRY, 2023,
  • [9] Machine Learning for Ionization Potentials and Photoionization Cross Sections of Volatile Organic Compounds
    Stewart, Matthew P.
    Martin, Scot T.
    ACS EARTH AND SPACE CHEMISTRY, 2023, : 863 - 875
  • [10] Symbolic, neural, and Bayesian machine learning models for predicting carcinogenicity of chemical compounds
    Bahler, D
    Stone, B
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2000, 40 (04): : 906 - 914