Realization of Hilbert Space Fragmentation and Fracton Dynamics in Two Dimensions

被引:0
|
作者
Will, Melissa [1 ,2 ]
Moessner, Roderich [3 ]
Pollmann, Frank [1 ,2 ]
机构
[1] Tech Univ Munich, TUM Sch Nat Sci, Phys Dept, D-85748 Garching, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[3] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
基金
欧洲研究理事会;
关键词
MANY-BODY LOCALIZATION; STATISTICAL-MECHANICS; QUANTUM; THERMALIZATION; CHAOS; ATOMS;
D O I
10.1103/PhysRevLett.133.196301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose the strongly tilted Bose-Hubbard model as a natural platform to explore Hilbert-space fragmentation (HSF) and fracton dynamics in two dimensions in a setup and regime readily accessible in optical lattice experiments. Using a perturbative ansatz, we find HSF when the model is tuned to the resonant limit of on-site interaction and tilted potential. First, we investigate the quench dynamics of this system and observe numerically that the relaxation dynamics strongly depends on the chosen initial state- one of the key signatures of HSF. Second, we identify fractonic excitations with restricted mobility leading to anomalous transport properties. Specifically, we find excitations that show one-dimensional diffusion (z = 1/2) as well as excitations that show subdiffusive behavior in two dimensions (z = 3/4). Using a cellular automaton, we analyze their dynamics and compare it to an effective hydrodynamic description.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] ON THE THEORY OF REALIZATION OF QUASILINEAR SYSTEMS DESCRIBED BY DIFFERENTIAL EQUATIONS IN A HILBERT SPACE
    Rusanov, V. A.
    Kozerev, V. A.
    Sharpinskyi, D. Yu.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2008, 44 (05) : 697 - 708
  • [42] REALIZATION THEORY IN HILBERT-SPACE FOR A CLASS OF TRANSFER-FUNCTIONS
    FUHRMANN, PA
    JOURNAL OF FUNCTIONAL ANALYSIS, 1975, 18 (04) : 338 - 349
  • [43] The realization of multiplier Hilbert bimodule on bidual space and Tietze extension theorem
    Fang, XC
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2000, 21 (03) : 375 - 380
  • [44] The complete set of homogeneous Hilbert curves in two dimensions
    Perez-Demydenko, C.
    Brito-Reyes, I.
    Aragon Fernandez, B.
    Estevez-Rams, E.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 : 531 - 542
  • [45] Resonances and the extension of dynamics to rigged Hilbert space
    Antoniou, I
    Dmitrieva, L
    Kuperin, Y
    Melnikov, Y
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 34 (5-6) : 399 - 425
  • [46] HILBERT SPACE HYPOCOERCIVITY FOR THE LANGEVIN DYNAMICS REVISITED
    Grothaus, Martin
    Stilgenbauer, Patrik
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2016, 22 (02): : 152 - 168
  • [47] Hilbert-space fragmentation, multifractality, and many-body localization
    Pietracaprina, Francesca
    Laflorencie, Nicolas
    ANNALS OF PHYSICS, 2021, 435
  • [48] Observation of Hilbert space fragmentation and fractonic excitations in 2D
    Adler, Daniel
    Wei, David
    Will, Melissa
    Srakaew, Kritsana
    Agrawal, Suchita
    Weckesser, Pascal
    Moessner, Roderich
    Pollmann, Frank
    Bloch, Immanuel
    Zeiher, Johannes
    NATURE, 2024, 636 (8041) : 80 - 85
  • [49] Hilbert space fragmentation and exact scars of generalized Fredkin spin chains
    Langlett, Christopher M.
    Xu, Shenglong
    PHYSICAL REVIEW B, 2021, 103 (22)
  • [50] Robust Hilbert space fragmentation in group-valued loop models
    Khudorozhkov, Alexey
    Stahl, Charles
    Hart, Oliver
    Nandkishore, Rahul
    PHYSICAL REVIEW B, 2025, 111 (02)