Realization of Hilbert Space Fragmentation and Fracton Dynamics in Two Dimensions

被引:0
|
作者
Will, Melissa [1 ,2 ]
Moessner, Roderich [3 ]
Pollmann, Frank [1 ,2 ]
机构
[1] Tech Univ Munich, TUM Sch Nat Sci, Phys Dept, D-85748 Garching, Germany
[2] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[3] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
基金
欧洲研究理事会;
关键词
MANY-BODY LOCALIZATION; STATISTICAL-MECHANICS; QUANTUM; THERMALIZATION; CHAOS; ATOMS;
D O I
10.1103/PhysRevLett.133.196301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose the strongly tilted Bose-Hubbard model as a natural platform to explore Hilbert-space fragmentation (HSF) and fracton dynamics in two dimensions in a setup and regime readily accessible in optical lattice experiments. Using a perturbative ansatz, we find HSF when the model is tuned to the resonant limit of on-site interaction and tilted potential. First, we investigate the quench dynamics of this system and observe numerically that the relaxation dynamics strongly depends on the chosen initial state- one of the key signatures of HSF. Second, we identify fractonic excitations with restricted mobility leading to anomalous transport properties. Specifically, we find excitations that show one-dimensional diffusion (z = 1/2) as well as excitations that show subdiffusive behavior in two dimensions (z = 3/4). Using a cellular automaton, we analyze their dynamics and compare it to an effective hydrodynamic description.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] EXACT CONTROLLABILITY AND OBSERVABILITY AND REALIZATION THEORY IN HILBERT-SPACE
    FUHRMANN, PA
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 53 (02) : 377 - 392
  • [22] To the Geometrical Theory of Differential Realization of Dynamic Processes in a Hilbert Space*
    Rusanov V.A.
    Daneev A.V.
    Linke Y.E.
    Cybernetics and Systems Analysis, 2017, 53 (4) : 554 - 564
  • [23] Realization of quantum permutation algorithm in high dimensional Hilbert space
    Chen, Dong-Xu
    Liu, Rui-Feng
    Zhang, Pei
    Wang, Yun-Long
    Li, Hong-Rong
    Gao, Hong
    Li, Fu-Li
    CHINESE PHYSICS B, 2017, 26 (06)
  • [24] Contribution to the qualitative realization theory of quasilinear systems in a Hilbert space
    V. A. Rusanov
    Doklady Mathematics, 2008, 78 : 636 - 638
  • [25] Realization of quantum permutation algorithm in high dimensional Hilbert space
    陈东旭
    刘瑞丰
    张沛
    王云龙
    李宏荣
    高宏
    李福利
    Chinese Physics B, 2017, 26 (06) : 42 - 46
  • [26] Contribution to the qualitative realization theory of quasilinear systems in a Hilbert space
    Rusanov, V. A.
    DOKLADY MATHEMATICS, 2008, 78 (01) : 636 - 638
  • [27] Dynamics of singularity surfaces for compressible, viscous flows in two space dimensions
    Hoff, D
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (11) : 1365 - 1407
  • [28] Observation of many-body Fock space dynamics in two dimensions
    Yao, Yunyan
    Xiang, Liang
    Guo, Zexian
    Bao, Zehang
    Yang, Yong-Feng
    Song, Zixuan
    Shi, Haohai
    Zhu, Xuhao
    Jin, Feitong
    Chen, Jiachen
    Xu, Shibo
    Zhu, Zitian
    Shen, Fanhao
    Wang, Ning
    Zhang, Chuanyu
    Wu, Yaozu
    Zou, Yiren
    Zhang, Pengfei
    Li, Hekang
    Wang, Zhen
    Song, Chao
    Cheng, Chen
    Mondaini, Rubem
    Wang, H.
    You, J. Q.
    Zhu, Shi-Yao
    Ying, Lei
    Guo, Qiujiang
    NATURE PHYSICS, 2023, 19 (10) : 1459 - 1465
  • [29] Observation of many-body Fock space dynamics in two dimensions
    Yunyan Yao
    Liang Xiang
    Zexian Guo
    Zehang Bao
    Yong-Feng Yang
    Zixuan Song
    Haohai Shi
    Xuhao Zhu
    Feitong Jin
    Jiachen Chen
    Shibo Xu
    Zitian Zhu
    Fanhao Shen
    Ning Wang
    Chuanyu Zhang
    Yaozu Wu
    Yiren Zou
    Pengfei Zhang
    Hekang Li
    Zhen Wang
    Chao Song
    Chen Cheng
    Rubem Mondaini
    H. Wang
    J. Q. You
    Shi-Yao Zhu
    Lei Ying
    Qiujiang Guo
    Nature Physics, 2023, 19 : 1459 - 1465
  • [30] Hilbert space fragmentation produces an effective attraction between fractons
    Feng, Xiaozhou
    Skinner, Brian
    PHYSICAL REVIEW RESEARCH, 2022, 4 (01):