Proton-exchange membrane fuel cells with ejector-type anodic recirculation systems

被引:1
|
作者
Yang, Zhuqiang [1 ]
Wang, Kun [1 ]
Xu, Youwei [2 ]
Li, Dongming [2 ]
Chen, Guiyin [2 ]
Lv, Ping [2 ]
Zhang, Bo [1 ,3 ]
机构
[1] Dalian Univ Technol, Sch Energy & Power Engn, Liaoning Key Lab Complex Energy Convers & Utilizat, Dalian 116024, Peoples R China
[2] Sunrise Power Co Ltd, Dalian 116085, Peoples R China
[3] Dalian Univ Technol, Ningbo Inst, Ningbo 315000, Peoples R China
基金
中国国家自然科学基金;
关键词
Ejector; Dual-ejector system; Anodic recirculation system; Proton-exchange membrane fuel cell; PERFORMANCE; DESIGN; OPTIMIZATION; MODEL; SIMULATION; PURGE; FLOW;
D O I
10.1016/j.ijhydene.2024.11.356
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Based on 150-kW fuel cell data and from the perspective of the anodic recirculation system (ARS) structure, this study added additional hydrogen recirculation components to meet the low-power hydrogen supply and recirculation of high-power stacks. Three different ARSs, namely, a parallel system, series system, and dual-ejector system, were established and integrated with the fuel cell. The ejector condensation model was established in this study because of the self-humidification function of high-power stacks. It was found that the parallel, series, and dual-ejector systems could achieve 5-100% power output of the stack and significantly decrease the power consumption of the hydrogen pump. In comparison to the series system, the parallel system exhibits a 15.8% improvement in stoichiometric ratio and a 14.8% enhancement in hydrogen recirculation ratio. The doubleejector system could reduce costs and increase the net output power of a proton-exchange membrane fuel cells (PEMFC) system by using an ejector instead of a hydrogen pump. In addition, the stoichiometric ratio of the dual-ejector system exhibits a 5.9% increase compared to that of the parallel system. Therefore, the dual-ejector system was the most promising.
引用
收藏
页码:408 / 418
页数:11
相关论文
共 50 条
  • [41] HIGH-POWER DENSITY PROTON-EXCHANGE MEMBRANE FUEL-CELLS
    MURPHY, OJ
    HITCHENS, GD
    MANKO, DJ
    JOURNAL OF POWER SOURCES, 1994, 47 (03) : 353 - 368
  • [42] Optimization of assembly clamping pressure on performance of proton-exchange membrane fuel cells
    Xing, Xiu Qing
    Lum, Kah Wai
    Poh, Hee Joo
    Wu, Yan Ling
    JOURNAL OF POWER SOURCES, 2010, 195 (01) : 62 - 68
  • [43] Modeling Current Density Distribution Inside Proton-Exchange Membrane Fuel Cells
    Moro, Federico
    Specogna, Ruben
    Stella, Andrea
    Trevisan, Francesco
    IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (02) : 699 - 702
  • [44] Effect of oxygen storage materials on the performance of proton-exchange membrane fuel cells
    Xu, ZQ
    Qi, ZG
    Kaufman, A
    JOURNAL OF POWER SOURCES, 2003, 115 (01) : 40 - 43
  • [45] Electrospinning preparation of a graphene oxide nanohybrid proton-exchange membrane for fuel cells
    Zhang, Shaopeng
    Li, Dan
    Kang, Jingxin
    Ma, Guiping
    Liu, Yong
    JOURNAL OF APPLIED POLYMER SCIENCE, 2018, 135 (27)
  • [46] A review on process models and controller design in proton-exchange membrane fuel cells
    Özel T.
    International Journal of Mechatronics and Manufacturing Systems, 2022, 15 (01) : 1 - 19
  • [47] Activation of proton-exchange membrane fuel cells via CO oxidative stripping
    Xu, Zhiqiang
    Qi, Zhigang
    Kaufman, Arthur
    JOURNAL OF POWER SOURCES, 2006, 156 (02) : 281 - 283
  • [48] Progress on the durability of catalyst layer interfaces in proton-exchange membrane fuel cells
    Ma, Hailing
    Tong, Yao
    Hung, Yew Mun
    Wang, Xin
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 192 : 358 - 377
  • [49] Ejector-type evacuator for wet assay systems
    Poth, EJ
    INDUSTRIAL AND ENGINEERING CHEMISTRY-ANALYTICAL EDITION, 1939, 11 : 0521 - 0521
  • [50] The influence of external operating conditions on membrane drying faults of proton-exchange membrane fuel cells
    Xiao, Fei
    Chen, Tao
    Gan, Zhongyu
    Zhang, Ruixuan
    ENERGY, 2023, 285