Proton-exchange membrane fuel cells with ejector-type anodic recirculation systems

被引:1
|
作者
Yang, Zhuqiang [1 ]
Wang, Kun [1 ]
Xu, Youwei [2 ]
Li, Dongming [2 ]
Chen, Guiyin [2 ]
Lv, Ping [2 ]
Zhang, Bo [1 ,3 ]
机构
[1] Dalian Univ Technol, Sch Energy & Power Engn, Liaoning Key Lab Complex Energy Convers & Utilizat, Dalian 116024, Peoples R China
[2] Sunrise Power Co Ltd, Dalian 116085, Peoples R China
[3] Dalian Univ Technol, Ningbo Inst, Ningbo 315000, Peoples R China
基金
中国国家自然科学基金;
关键词
Ejector; Dual-ejector system; Anodic recirculation system; Proton-exchange membrane fuel cell; PERFORMANCE; DESIGN; OPTIMIZATION; MODEL; SIMULATION; PURGE; FLOW;
D O I
10.1016/j.ijhydene.2024.11.356
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Based on 150-kW fuel cell data and from the perspective of the anodic recirculation system (ARS) structure, this study added additional hydrogen recirculation components to meet the low-power hydrogen supply and recirculation of high-power stacks. Three different ARSs, namely, a parallel system, series system, and dual-ejector system, were established and integrated with the fuel cell. The ejector condensation model was established in this study because of the self-humidification function of high-power stacks. It was found that the parallel, series, and dual-ejector systems could achieve 5-100% power output of the stack and significantly decrease the power consumption of the hydrogen pump. In comparison to the series system, the parallel system exhibits a 15.8% improvement in stoichiometric ratio and a 14.8% enhancement in hydrogen recirculation ratio. The doubleejector system could reduce costs and increase the net output power of a proton-exchange membrane fuel cells (PEMFC) system by using an ejector instead of a hydrogen pump. In addition, the stoichiometric ratio of the dual-ejector system exhibits a 5.9% increase compared to that of the parallel system. Therefore, the dual-ejector system was the most promising.
引用
收藏
页码:408 / 418
页数:11
相关论文
共 50 条
  • [21] Performance degradation of a proton exchange membrane fuel cell with dual ejector-based recirculation
    Liu, Yang
    Xiao, Biao
    Zhao, Junjie
    Fan, Lixin
    Luo, Xiaobing
    Tu, Zhengkai
    Hwa Chan, Siew
    Tu, Zhengkai (tzklq@hust.edu.cn), 1600, Elsevier Ltd (12):
  • [22] Structural optimization of hydrogen recirculation ejector for proton exchange membrane fuel cells considering the boundary layer separation effect
    Bian, Jiang
    Zhang, Yue
    Liu, Yang
    Gong, Liang
    Cao, Xuewen
    JOURNAL OF CLEANER PRODUCTION, 2023, 397
  • [23] Developing long-durability proton-exchange membrane fuel cells
    Zhang, Fan
    Zu, Bingfeng
    Wang, Bowen
    Qin, Zhikun
    Yao, Junqi
    Wang, Zixuan
    Fan, Linhao
    Jiao, Kui
    JOULE, 2025, 9 (03)
  • [24] Coupled Dynamics of Anode and Cathode in Proton-Exchange Membrane Fuel Cells
    Nogueira, Jessica A.
    Krischer, Katharina
    Varela, Hamilton
    CHEMPHYSCHEM, 2019, 20 (22) : 3081 - 3088
  • [25] METHODS TO ADVANCE TECHNOLOGY OF PROTON-EXCHANGE MEMBRANE FUEL-CELLS
    SRINIVASAN, S
    TICIANELLI, EA
    DEROUIN, CR
    REDONDO, A
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (03) : C145 - C145
  • [26] Anisotropic heat conduction effects in proton-exchange membrane fuel cells
    Bapat, Chaitanya J.
    Thyneill, Stefan T.
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2007, 129 (09): : 1109 - 1118
  • [27] Technical and Commercial Challenges of Proton-Exchange Membrane (PEM) Fuel Cells
    Alaswad, Abed
    Omran, Abdelnasir
    Sodre, Jose Ricardo
    Wilberforce, Tabbi
    Pignatelli, Gianmichelle
    Dassisti, Michele
    Baroutaji, Ahmad
    Olabi, Abdul Ghani
    ENERGIES, 2021, 14 (01)
  • [28] METHODS TO ADVANCE TECHNOLOGY OF PROTON-EXCHANGE MEMBRANE FUEL-CELLS
    TICIANELLI, EA
    DEROUIN, CR
    REDONDO, A
    SRINIVASAN, S
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (09) : 2209 - 2214
  • [29] HYDROGEN OXYGEN PROTON-EXCHANGE MEMBRANE FUEL-CELLS AND ELECTROLYZERS
    BALDWIN, R
    PHAM, M
    LEONIDA, A
    MCELROY, J
    NALETTE, T
    JOURNAL OF POWER SOURCES, 1990, 29 (3-4) : 399 - 412
  • [30] Modeling hydrogen starvation conditions in proton-exchange membrane fuel cells
    Ohs, Jan Hendrik
    Sauter, Ulrich
    Maass, Sebastian
    Stolten, Detlef
    JOURNAL OF POWER SOURCES, 2011, 196 (01) : 255 - 263