Co-N-C catalyst with single atom active sites for base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions

被引:1
|
作者
Hameed, Sohaib [1 ,2 ]
Pan, Xiaoli [1 ]
Guan, Weixiang [1 ]
Wang, Aiqin [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, CAS Key Lab Sci & Technol Appl Catalysis, iCHEM, 457 Zhongshan Rd, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
MOLECULAR CATALYSIS | 2024年 / 569卷
基金
中国国家自然科学基金;
关键词
5-Furandicarboxylic acid (FDCA); Biomass conversion; Noble-metal-free Co-N-C catalyst; Base-free oxidation; Single atom active sites; SELECTIVE OXIDATION; OXYGEN REDUCTION; PERFORMANCE; CONVERSION; TEMPERATURE; WATER;
D O I
10.1016/j.mcat.2024.114616
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The production of 2,5-furandicarboxylic acid (FDCA), a promising biodegradable alternative to fossil-based terephthalic acid (PTA), from biomass-derived 5-hydroxymethylfurfural (HMF) is of significant importance. A major challenge is to develop an effective non-precious metal catalyst system that does not require a homogeneous base. In this study, we present a noble-metal-free Co-N-C catalyst, derived from the pyrolysis of cobaltphenanthroline complexes on a carbon support. This catalyst demonstrates exceptional performance, achieving a FDCA yield of 99.9 % and maintaining reusability for up to five catalytic cycles in the base-free oxidation of HMF to FDCA under mild conditions. Through controlled experiments and comprehensive characterizations, we propose that the active sites in the Co-N-C catalyst are Co single atoms bonded to nitrogen within graphitic sheets. This approach provides valuable insights into the exact nature of the active sites in such noble-metal-free M-N-C catalysts designed for biomass conversion
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Magnetic Laccase Catalyst
    Wang, Ke-Feng
    Liu, Chun-lei
    Sui, Kun-yan
    Guo, Chen
    Liu, Chun-Zhao
    CHEMBIOCHEM, 2018, 19 (07) : 654 - 659
  • [32] Solvent-dependent selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under neat conditions
    Kai-Jian Liu
    Tang-Yu Zeng
    Jia-Le Zeng
    Shao-Feng Gong
    Jun-Yi He
    Ying-Wu Lin
    Jia-Xi Tan
    Zhong Cao
    Wei-Min He
    Chinese Chemical Letters, 2019, 30 (12) : 2304 - 2308
  • [33] Base-free oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over palygorskite-supported bimetallic Pt-Pd catalyst
    Zhong, Xuemin
    Wei, Yanfu
    Sadjadi, Samahe
    Liu, Dong
    Li, Mengyuan
    Yu, Ting
    Zhuang, Guanzheng
    Yuan, Peng
    APPLIED CLAY SCIENCE, 2022, 226
  • [34] Ag substituted Au clusters supported on Mg-Al-hydrotalcite for highly efficient base-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Liu, Zongyang
    Tan, Yuan
    Li, Jie
    Li, Xiuli
    Xiao, Yan
    Su, Juan
    Chen, Xingkun
    Qiao, Botao
    Ding, Yunjie
    GREEN CHEMISTRY, 2022, 24 (22) : 8840 - 8852
  • [35] Ru/MgO-catalysed selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Lokhande, Priya
    Dhepe, Paresh L.
    Wilson, Karen
    Lee, Adam F.
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2024, 77 (10)
  • [36] Solvent-dependent selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under neat conditions
    Liu, Kai-Jian
    Zeng, Tang-Yu
    Zeng, Jia-Le
    Gong, Shao-Feng
    He, Jun-Yi
    Lin, Ying-Wu
    Tan, Jia-Xi
    Cao, Zhong
    He, Wei-Min
    CHINESE CHEMICAL LETTERS, 2019, 30 (12) : 2304 - 2308
  • [37] Selective aerobic oxidation of the biomass-derived precursor 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid under mild conditions over a magnetic palladium nanocatalyst
    Zhang, Zehui
    Zhen, Judun
    Liu, Bing
    Lv, Kangle
    Deng, Kejian
    GREEN CHEMISTRY, 2015, 17 (02) : 1308 - 1317
  • [38] Ce-Modified MgFe-LDH Supported Au Particles: An Efficient Catalyst for Base-Free Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid
    Moradi, Hanieh
    Kulinich, Sergei A.
    Wunderlich, Wilfried
    Ghiaci, Mehran
    CHEMISTRYSELECT, 2024, 9 (04):
  • [39] Preparation of NiO-N/C composites for electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Wang, Wei
    Zhang, Zhe
    Wang, Min
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (18) : 17247 - 17254
  • [40] Preparation of NiO-N/C composites for electrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid
    Wei Wang
    Zhe Zhang
    Min Wang
    Biomass Conversion and Biorefinery, 2023, 13 : 17247 - 17254