On the treewidth of generalized Kneser graphs

被引:0
|
作者
Metsch, Klaus [1 ]
机构
[1] Justus-Liebig-Universität, Mathematisches Institut, Arndtstraße 2, Giessen,D-35392, Germany
来源
arXiv | 2022年
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Random Kneser graphs and hypergraphs
    Kupavskii, Andrey
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2018, 25 (04):
  • [42] Achromatic numbers of Kneser graphs
    Araujo-Pardo, Gabriela
    Carlos Diaz-Patino, Juan
    Rubio-Montiel, Christian
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2021, 21 (01)
  • [43] Sparse Kneser graphs are Hamiltonian
    Mutze, Torsten
    Nummenpalo, Jerri
    Walczak, Bartosz
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (04): : 1253 - 1275
  • [44] Geodetic convexity and kneser graphs
    Bedo, Marcos
    Leite, Joao V. S.
    Oliveira, Rodolfo A.
    Protti, Fabio
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2023, 449
  • [45] Symmetries of the stable Kneser graphs
    Braun, Benjamin
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2010, 45 (01) : 12 - 14
  • [46] The determining number of Kneser graphs
    Caceres, Jose
    Garijo, Delia
    Gonzalez, Antonio
    Marquez, Alberto
    Luiz Puertas, Maria
    [J]. DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2013, 15 (01): : 1 - 14
  • [47] The determining number of Kneser graphs
    [J]. 1600, Discrete Mathematics and Theoretical Computer Science (15):
  • [48] STRONG PRODUCTS OF KNESER GRAPHS
    KLAVZAR, S
    MILUTINOVIC, U
    [J]. DISCRETE MATHEMATICS, 1994, 133 (1-3) : 297 - 300
  • [49] A Note on Treewidth in Random Graphs
    Wang, Chaoyi
    Liu, Tian
    Cui, Peng
    Xu, Ke
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, 2011, 6831 : 491 - +
  • [50] On Low Treewidth Graphs and Supertrees
    Grigoriev, Alexander
    Kelk, Steven
    Lekic, Nela
    [J]. ALGORITHMS FOR COMPUTATIONAL BIOLOGY, 2014, 8542 : 71 - 82