STRONG PRODUCTS OF KNESER GRAPHS

被引:7
|
作者
KLAVZAR, S [1 ]
MILUTINOVIC, U [1 ]
机构
[1] UNIV MARIBOR,PF,MARIBOR 62000,SLOVENIA
关键词
D O I
10.1016/0012-365X(94)90037-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G X H be the strong product of graphs G and H. We give a short proof that chi(G X H) greater-than-or-equal-to chi(G) + 2omega(H)-2. Kneser graphs are then used to demonstrate that this lower bound is sharp. We also prove that for every n greater-than-or-equal-to 2 there is an infinite sequence of pairs of graphs G and G' such that G' is not a retract of G while G' X K(n) is a retract of G X K(n).
引用
收藏
页码:297 / 300
页数:4
相关论文
共 50 条
  • [1] Strong edge colorings of graphs and the covers of Kneser graphs
    Luzar, Borut
    Macajova, Edita
    Skoviera, Martin
    Sotak, Roman
    [J]. JOURNAL OF GRAPH THEORY, 2022, 100 (04) : 686 - 697
  • [2] Independence number of products of Kneser graphs
    Bresar, Bostjan
    Valencia-Pabon, Mario
    [J]. DISCRETE MATHEMATICS, 2019, 342 (04) : 1017 - 1027
  • [3] Clique number of Xor products of Kneser graphs
    Imolay, Andras
    Kocsis, Anett
    Schweitzer, Adam
    [J]. DISCRETE MATHEMATICS, 2022, 345 (07)
  • [4] Graphs cospectral with Kneser graphs
    Haemers, Willem H.
    Ramezani, Farzaneh
    [J]. COMBINATORICS AND GRAPHS, 2010, 531 : 159 - +
  • [5] The toughness of Kneser graphs
    Park, Davin
    Ostuni, Anthony
    Hayes, Nathan
    Banerjee, Amartya
    Wakhare, Tanay
    Wong, Wiseley
    Cioaba, Sebastian
    [J]. DISCRETE MATHEMATICS, 2021, 344 (09)
  • [6] Hamiltonian Kneser graphs
    Chen, YC
    Füredi, Z
    [J]. COMBINATORICA, 2002, 22 (01) : 147 - 149
  • [7] Pebbling in Kneser Graphs
    Adauto, Matheus
    Bardenova, Viktoriya
    da Cruz, Mariana
    de Figueiredo, Celina
    Hurlbert, Glenn
    Sasaki, Diana
    [J]. LATIN 2024: THEORETICAL INFORMATICS, PT II, 2024, 14579 : 46 - 60
  • [8] On the diameter of Kneser graphs
    Valencia-Pabon, M
    Vera, JC
    [J]. DISCRETE MATHEMATICS, 2005, 305 (1-3) : 383 - 385
  • [9] Hamiltonian Kneser Graphs
    Ya-Chen Chen
    Z. Füredi
    [J]. Combinatorica, 2002, 22 : 147 - 149
  • [10] Path Decompositions of Kneser and Generalized Kneser Graphs
    Rodger, C. A.
    Whitt, Thomas Richard, III
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2015, 58 (03): : 610 - 619