Decentralized optimum power flow using evolutionary multi-objective evolutionary algorithms

被引:0
|
作者
De Andrade Amorim, Elizete [1 ]
Romero, Rubén [2 ]
Mantovani, José R. S. [2 ]
机构
[1] Universidade Federal de Mato Grosso do Sul - UFMS, Departamento de Engenharia Elétrica, Campus de Campo Grande, Caixa Postal 549, CEP 79070-900 - Campo Grande MS, Brazil
[2] Universidade Estadual Paulista Júlio de Mesquista Filho, Grupo de Pesquisa em Planejamento de Sistemas Elétricos, Departamento de Engenharia Elétrica - UNESP, Caixa Postal 031, CEP 15385-000 - Ilha Solteira SP, Brazil
来源
Controle y Automacao | 2009年 / 20卷 / 02期
关键词
Constrained optimization - Evolutionary algorithms - Fuzzy set theory - Multiobjective optimization - Acoustic generators - Electric load flow - Nonlinear programming - Clustering algorithms - Computation theory;
D O I
10.1590/s0103-17592009000200009
中图分类号
学科分类号
摘要
This work presents the development of a computational tool for decentralized optimal power flow (OPF) solution. For this purpose, the OPF problem is decoupled into areas defining several regional OPF subproblems. The OPF is modeled as a constrained nonlinear optimization problem, non-convex, in that the active power losses and optimal dispatch of active and reactive power are minimized simultaneously. Regional OPF subproblems are solved by multiobjective evolutionary algorithm based on the Pareto theory. The proposed approach employs a diversity-preserving mechanism to overcome the premature convergence of algorithm and local optimal solutions. Fuzzy set theory is employed to extract the best compromises of the Pareto set. In addition, a hierarchical clustering algorithm is implemented for reducing Pareto set. To validate the efficiency of the model and the proposed solution technique, the results e analyses of the simulations with the RTS-96 e IEEE-354 test systems are presented.
引用
收藏
页码:217 / 232
相关论文
共 50 条
  • [21] Genetic diversity as an objective in multi-objective evolutionary algorithms
    Toffolo, A
    Benini, E
    EVOLUTIONARY COMPUTATION, 2003, 11 (02) : 151 - 167
  • [22] Influence Maximization in Hypergraphs Using Multi-Objective Evolutionary Algorithms
    Genetti, Stefano
    Ribaga, Eros
    Cunegatti, Elia
    Lotito, Quintino F.
    Iacca, Giovanni
    PARALLEL PROBLEM SOLVING FROM NATURE-PPSN XVIII, PT IV, PPSN 2024, 2024, 15151 : 217 - 235
  • [23] Multi-objective tag SNPs selection using evolutionary algorithms
    Ting, Chuan-Kang
    Lin, Wei-Ting
    Huang, Yao-Ting
    BIOINFORMATICS, 2010, 26 (11) : 1446 - 1452
  • [24] Combined Heat and Power Environmental/Economic Power Dispatch Using Multi-Objective Evolutionary Algorithms
    Chen, Chien-Hung
    Chen, Jian-Hung
    IMCIC 2010: INTERNATIONAL MULTI-CONFERENCE ON COMPLEXITY, INFORMATICS AND CYBERNETICS, VOL I (POST-CONFERENCE EDITION), 2010, : 165 - 169
  • [25] Multi-objective optimization in evolutionary algorithms using satisfiability classes
    Drechsler, N
    Drechsler, R
    Becker, B
    COMPUTATIONAL INTELLIGENCE: THEORY AND APPLICATIONS, 1999, 1625 : 108 - 117
  • [26] Data mining rules using multi-objective evolutionary algorithms
    de la Iglesia, B
    Philpott, MS
    Bagnall, AJ
    Rayward-Smith, VJ
    CEC: 2003 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-4, PROCEEDINGS, 2003, : 1552 - 1559
  • [27] Experiences Using Julia for Implementing Multi-objective Evolutionary Algorithms
    Nebro, Antonio J.
    Gandibleux, Xavier
    METAHEURISTICS, MIC 2024, PT II, 2024, 14754 : 174 - 187
  • [28] MULTI-OBJECTIVE NETWORK RELIABILITY OPTIMIZATION USING EVOLUTIONARY ALGORITHMS
    Aguirre, Oswaldo
    Villanueva, Delia
    Taboada, Heidi
    15TH ISSAT INTERNATIONAL CONFERENCE ON RELIABILITY AND QUALITY IN DESIGN, PROCEEDINGS, 2009, : 427 - 431
  • [29] Optimization of sensor deployment using multi-objective evolutionary algorithms
    Ndam Njoya A.
    Abdou W.
    Dipanda A.
    Tonye E.
    Journal of Reliable Intelligent Environments, 2016, 2 (4) : 209 - 220
  • [30] Multi-objective optimisation of cancer chemotherapy using evolutionary algorithms
    Petrovski, A
    McCall, J
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS, 2001, 1993 : 531 - 545