Nonlinear system identification using Takagi-Sugeno-Kang type interval-valued fuzzy systems via stable learning mechanism

被引:0
|
作者
Lee, Ching-Hung [1 ]
Lee, Yi-Han [1 ]
机构
[1] Department of Electrical Engineering, Yuan-Ze University, Chung-li, Taoyuan 320, Taiwan
关键词
33;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:249 / 259
相关论文
共 50 条
  • [41] Sliding mode incremental learning algorithm for interval type-2 Takagi–Sugeno–Kang fuzzy neural networks
    Sevil Ahmed
    Nikola Shakev
    Andon Topalov
    Kostadin Shiev
    Okyay Kaynak
    Evolving Systems, 2012, 3 (3) : 179 - 188
  • [42] On interval-data based Type-1 Takagi-Sugeno fuzzy systems for uncertain nonlinear dynamic system identification
    Zaidi, Salman
    Kroll, Andreas
    AT-AUTOMATISIERUNGSTECHNIK, 2016, 64 (06) : 418 - 427
  • [43] Appraisal of Takagi-Sugeno-Kang type of adaptive neuro-fuzzy inference system for draft force prediction of chisel plow implement
    Shafaei, S. M.
    Loghavi, M.
    Kamgar, S.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2017, 142 : 406 - 415
  • [44] High-order interval type-2 Takagi-Sugeno-Kang fuzzy logic system and its application in acoustic emission signal modeling in turning process
    Qun Ren
    Marek Balazinski
    Luc Baron
    The International Journal of Advanced Manufacturing Technology, 2012, 63 : 1057 - 1063
  • [45] High-order interval type-2 Takagi-Sugeno-Kang fuzzy logic system and its application in acoustic emission signal modeling in turning process
    Ren, Qun
    Balazinski, Marek
    Baron, Luc
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2012, 63 (9-12): : 1057 - 1063
  • [46] Real time adaptive probabilistic recurrent Takagi-Sugeno-Kang fuzzy neural network proportional-integral-derivative controller for nonlinear systems
    Khater, A. Aziz
    Gaballah, Eslam M.
    El-Bardin, Mohammad
    El-Nagar, Ahmad M.
    ISA TRANSACTIONS, 2024, 152 : 191 - 207
  • [47] Type-1 Non-singleton Type-2 Takagi-Sugeno-Kang Fuzzy Logic Systems Using the Hybrid Mechanism Composed by a Kalman Type Filter and Back Propagation Methods
    Mendez, Gerardo M.
    Hernandez, Angeles
    Cavazos, Alberto
    Mata-Jimenez, Marco-Tulio
    HYBRID ARTIFICIAL INTELLIGENCE SYSTEMS, PT 1, 2010, 6076 : 429 - +
  • [48] Dynamic System Identification and Prediction Using a Self-Evolving Takagi-Sugeno-Kang-Type Fuzzy CMAC Network
    Lin, Cheng-Jian
    Lin, Cheng-Hsien
    Jhang, Jyun-Yu
    ELECTRONICS, 2020, 9 (04)
  • [49] Exploiting maximum energy from variable speed wind power generation systems by using an adaptive Takagi-Sugeno-Kang fuzzy model
    Galdi, V.
    Piccolo, A.
    Siano, P.
    ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (02) : 413 - 421
  • [50] Takagi-Sugeno-Kang type probabilistic fuzzy neural network control for grid-connected LiFePO4 battery storage system
    Lin, Faa-Jeng
    Huang, Ming-Shi
    Hung, Ying-Chih
    Kuan, Chi-Hsuan
    Wang, Sheng-Long
    Lee, Yih-Der
    IET POWER ELECTRONICS, 2013, 6 (06) : 1029 - 1040