Nonlinear system identification using Takagi-Sugeno-Kang type interval-valued fuzzy systems via stable learning mechanism

被引:0
|
作者
Lee, Ching-Hung [1 ]
Lee, Yi-Han [1 ]
机构
[1] Department of Electrical Engineering, Yuan-Ze University, Chung-li, Taoyuan 320, Taiwan
关键词
33;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:249 / 259
相关论文
共 50 条
  • [31] Interval Type-2 Non-Singleton Type-2 Takagi-Sugeno-Kang Fuzzy Logic Systems Using the Hybrid Learning Mechanism Recursive-Least-Square and Back-Propagation Methods
    Mendez, Gerardo M.
    de los Angeles Hernandez, Maria
    11TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2010), 2010, : 710 - 714
  • [32] Design of Takagi Sugeno Kang Type Interval Type-2 Fuzzy Logic Systems Optimized with Hybrid Algorithms
    Yang Chen
    Jiaxiu Yang
    Chenxi Li
    International Journal of Fuzzy Systems, 2023, 25 : 868 - 879
  • [33] Study on Non-iterative Algorithms for Center-of-Sets Type-Reduction of Interval Type-2 Takagi-Sugeno-Kang Fuzzy Logic Systems
    Zhou, Junge
    Chen, Yang
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2024, : 2675 - 2687
  • [34] Evolutionary system identification via descriptive Takagi Sugeno fuzzy systems
    Renners, I
    Grauel, A
    ADVANCES IN INTELLIGENT DATA ANALYSIS V, 2003, 2810 : 474 - 485
  • [35] Design of Takagi Sugeno Kang Type Interval Type-2 Fuzzy Logic Systems Optimized with Hybrid Algorithms
    Chen, Yang
    Yang, Jiaxiu
    Li, Chenxi
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2023, 25 (02) : 868 - 879
  • [36] Feature Selection and Rule Generation Integrated Learning for Takagi-Sugeno-Kang Fuzzy System and Its Application in Medical Data Classification
    Gu, Xiaoqing
    Zhang, Cong
    Ni, Tongguang
    IEEE ACCESS, 2019, 7 : 169029 - 169037
  • [37] ICT2TSK: An Improved Clustering Algorithm for WSN Using a Type-2 Takagi-Sugeno-Kang Fuzzy Logic System
    Zhang, Feng
    Zhang, Qi-Ye
    Sun, Ze-Ming
    2013 IEEE SYMPOSIUM ON WIRELESS TECHNOLOGY & APPLICATIONS (ISWTA2013), 2013, : 153 - 158
  • [38] Nonlinear system identification using Takagi-Sugeno type neuro-fuzzy model
    Panchariya, PC
    Palit, AK
    Popovic, D
    Sharma, AL
    2004 2ND INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2004, : 76 - 81
  • [39] Jointly Composite Feature Learning and Autism Spectrum Disorder Classification Using Deep Multi-Output Takagi-Sugeno-Kang Fuzzy Inference Systems
    Lu, Zhaowu
    Wang, Jun
    Mao, Rui
    Lu, Minhua
    Shi, Jun
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (01) : 476 - 488
  • [40] Parameter Prediction with Novel Enhanced Wagner Hagras Interval Type-3 Takagi-Sugeno-Kang Fuzzy System with Type-1 Non-Singleton Inputs
    Castorena, Gerardo Armando Hernandez
    Mendez, Gerardo Maximiliano
    Lopez-Juarez, Ismael
    Garcia, Maria Aracelia Alcorta
    Martinez-Peon, Dulce Citlalli
    Montes-Dorantes, Pascual Noradino
    MATHEMATICS, 2024, 12 (13)