A Clay-Based Quasi-Solid-State electrolyte with high cation selective channels for High-Performance aqueous Zinc-Ion batteries

被引:0
|
作者
Wang, Haiyan [1 ,2 ]
Zhang, Zhuo [1 ,2 ]
Li, Ye [1 ,2 ]
Zhang, Feifei [3 ]
Yang, Kuo [1 ,2 ]
Xue, Bing [1 ,2 ]
机构
[1] Minist Educ, Key Lab Automobile Mat, Changchun 130022, Peoples R China
[2] Jilin Univ, Dept Mat Sci & Engn, Changchun 130022, Peoples R China
[3] Yantai Econ & Technol Open Econ Zone Market Superv, Yantai 264006, Peoples R China
基金
中国国家自然科学基金;
关键词
Kaolinite; Dimethyl sulfoxide; Quasi-solid-state electrolyte; Aqueous zinc-ion batteries; KAOLINITE; INTERCALATION; DIMETHYLSULFOXIDE;
D O I
10.1016/j.cej.2024.156514
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A clay-based quasi-solid-state electrolyte was prepared using dimethyl sulfoxide (DMSO) intercalated kaolinite as the raw material to suppress the adverse effects of free water molecules on aqueous zinc-ion batteries (AZIBs). Based on the inherent water absorption and retention properties of clay kaolinite, as well as the interlayer modification, this clay-based quasi-solid-state electrolyte not only achieved a low water content but also exhibited a strong water binding effect, which restricted the HER and side reactions involving water participation. Furthermore, the intercalation of DMSO increased the number of negative charges on the surface of kaolinite, resulting in the formation of a continuous spatial electrostatic field area around the kaolinite particles, which played a role in cation selectivity. The ionic transference number of the quasi-solid-state electrolyte reached 0.91. Additionally, the intercalation of DMSO broadened the interlayer ionic transport channels of kaolinite, further enhancing the transport efficiency of Zn2+ in the quasi-solid-state electrolyte, achieving uniform deposition of Zn2+ on the surface of the Zn anode, and suppressing dendrite growth to maintain a stable quasi-solid-state electrolyte/Zn anode interface. Zn||MnO2 battery assembled with this electrolyte demonstrated a discharge specific capacity of 301 mAh/g at a current density of 60 mA g- 1. The Zn||MnO2 battery could be stably cycled for 1000 cycles at a current density of 150 mA g- 1, and after 1000 cycles, the battery still maintained a discharge specific capacity of 248.2 mAh/g with a capacity retention rate of 84.8 %, showing excellent capacity performance and cycle stability. The Zn||MnO2 pouch battery could still provide stable power under heavy pressure, bending, and continuous tapping and had the potential for use in flexible batteries.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Rational design of an in-build quasi-solid-state electrolyte for high-performance lithium-ion batteries with the silicon-based anode
    Zhao, Enyou
    Luo, Shiqiang
    Hu, Anyi
    Liao, Zhu
    Huang, Chenxi
    Akihiro, Orita
    Jiang, Ping
    Yang, Li
    CHEMICAL ENGINEERING JOURNAL, 2023, 463
  • [42] Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material
    Zhou, Weijun
    Chen, Minfeng
    Wang, Anran
    Huang, Aixiang
    Chen, Jizhang
    Xu, Xinwu
    Wong, Ching-Ping
    JOURNAL OF ENERGY CHEMISTRY, 2021, 52 : 377 - 384
  • [43] Carbon Foam-Supported VS2 Cathode for High-Performance Flexible Self-Healing Quasi-Solid-State Zinc-Ion Batteries
    Mao, Yunjie
    Zhao, Bangchuan
    Bai, Jin
    Ma, Hongyang
    Wang, Peiyao
    Li, Wanyun
    Xiao, Ke
    Wang, Siya
    Zhu, Xuebin
    Sun, Yuping
    SMALL, 2023, 19 (25)
  • [44] Hollow-Particles Quasi-Solid-State Electrolytes with Biomimetic Ion Channels for High-Performance Lithium-Metal Batteries
    Liu, Zixin
    Chen, Weizhe
    Zhang, Fengling
    Wu, Feng
    Chen, Renjie
    Li, Li
    SMALL, 2023, 19 (18)
  • [45] Gradient Quasi-Solid Electrolyte Enables Selective and Fast Ion Transport for Robust Aqueous Zinc-Ion Batteries
    Cui, Yanglansen
    Chen, Weipeng
    Xin, Weiwen
    Ling, Haoyang
    Hu, Yuhao
    Zhang, Zhehua
    He, Xiaofeng
    Zhao, Yong
    Kong, Xiang-Yu
    Wen, Liping
    Jiang, Lei
    ADVANCED MATERIALS, 2024, 36 (06)
  • [46] High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte
    Chen, Minfeng
    Chen, Jizhang
    Zhou, Weijun
    Xu, Junling
    Wong, Ching-Ping
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (46) : 26524 - 26532
  • [47] Electrolyte Engineering Enables High Performance Zinc-Ion Batteries
    Wang, Yanyan
    Wang, Zhijie
    Yang, Fuhua
    Liu, Sailin
    Zhang, Shilin
    Mao, Jianfeng
    Guo, Zaiping
    SMALL, 2022, 18 (43)
  • [48] Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries
    Xing-hua Qin
    Ye-hong Du
    Peng-chao Zhang
    Xin-yu Wang
    Qiong-qiong Lu
    Ai-kai Yang
    Jun-cai Sun
    International Journal of Minerals, Metallurgy and Materials, 2021, 28 : 1684 - 1692
  • [49] High-Performance Quasi-Solid-State MXene-Based Li-I Batteries
    Tang, Xiao
    Zhou, Dong
    Li, Peng
    Guo, Xin
    Wang, Chengyin
    Kang, Feiyu
    Li, Baohua
    Wang, Guoxiu
    ACS CENTRAL SCIENCE, 2019, 5 (02) : 365 - 373
  • [50] Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries
    Xing-hua Qin
    Ye-hong Du
    Peng-chao Zhang
    Xin-yu Wang
    Qiong-qiong Lu
    Ai-kai Yang
    Jun-cai Sun
    International Journal of Minerals Metallurgy and Materials, 2021, 28 (10) : 1684 - 1692