A Clay-Based Quasi-Solid-State electrolyte with high cation selective channels for High-Performance aqueous Zinc-Ion batteries

被引:0
|
作者
Wang, Haiyan [1 ,2 ]
Zhang, Zhuo [1 ,2 ]
Li, Ye [1 ,2 ]
Zhang, Feifei [3 ]
Yang, Kuo [1 ,2 ]
Xue, Bing [1 ,2 ]
机构
[1] Minist Educ, Key Lab Automobile Mat, Changchun 130022, Peoples R China
[2] Jilin Univ, Dept Mat Sci & Engn, Changchun 130022, Peoples R China
[3] Yantai Econ & Technol Open Econ Zone Market Superv, Yantai 264006, Peoples R China
基金
中国国家自然科学基金;
关键词
Kaolinite; Dimethyl sulfoxide; Quasi-solid-state electrolyte; Aqueous zinc-ion batteries; KAOLINITE; INTERCALATION; DIMETHYLSULFOXIDE;
D O I
10.1016/j.cej.2024.156514
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A clay-based quasi-solid-state electrolyte was prepared using dimethyl sulfoxide (DMSO) intercalated kaolinite as the raw material to suppress the adverse effects of free water molecules on aqueous zinc-ion batteries (AZIBs). Based on the inherent water absorption and retention properties of clay kaolinite, as well as the interlayer modification, this clay-based quasi-solid-state electrolyte not only achieved a low water content but also exhibited a strong water binding effect, which restricted the HER and side reactions involving water participation. Furthermore, the intercalation of DMSO increased the number of negative charges on the surface of kaolinite, resulting in the formation of a continuous spatial electrostatic field area around the kaolinite particles, which played a role in cation selectivity. The ionic transference number of the quasi-solid-state electrolyte reached 0.91. Additionally, the intercalation of DMSO broadened the interlayer ionic transport channels of kaolinite, further enhancing the transport efficiency of Zn2+ in the quasi-solid-state electrolyte, achieving uniform deposition of Zn2+ on the surface of the Zn anode, and suppressing dendrite growth to maintain a stable quasi-solid-state electrolyte/Zn anode interface. Zn||MnO2 battery assembled with this electrolyte demonstrated a discharge specific capacity of 301 mAh/g at a current density of 60 mA g- 1. The Zn||MnO2 battery could be stably cycled for 1000 cycles at a current density of 150 mA g- 1, and after 1000 cycles, the battery still maintained a discharge specific capacity of 248.2 mAh/g with a capacity retention rate of 84.8 %, showing excellent capacity performance and cycle stability. The Zn||MnO2 pouch battery could still provide stable power under heavy pressure, bending, and continuous tapping and had the potential for use in flexible batteries.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries
    Liu, Chaofeng
    Neale, Zachary
    Zheng, Jiqi
    Jia, Xiaoxiao
    Huang, Juanjuan
    Yan, Mengyu
    Tian, Meng
    Wang, Mingshan
    Yang, Jihui
    Cao, Guozhong
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (07) : 2273 - 2285
  • [32] Organic cation-supported layered vanadate cathode for high-performance aqueous zinc-ion batteries
    Wang, Changding
    Li, Yingfang
    Zhang, Sida
    Sang, Tian-Yi
    Lei, Yu
    Liu, Ruiqi
    Wan, Fu
    Chen, Yuejiao
    Chen, Weigen
    Zheng, Yujie
    Sun, Shuhui
    CARBON ENERGY, 2025, 7 (02)
  • [33] High-performance flexible quasi-solid-state zinc-ion batteries with layer-expanded vanadium oxide cathode and zinc/stainless steel mesh composite anode
    Zhao, Jin
    Ren, Hao
    Liang, Qinghua
    Yuan, Du
    Xi, Shibo
    Wu, Chen
    Manalastas, William, Jr.
    Ma, Jianmin
    Fang, Wei
    Zheng, Yun
    Du, Cheng-Feng
    Srinivasan, Madhavi
    Yan, Qingyu
    NANO ENERGY, 2019, 62 : 94 - 102
  • [34] Manipulating Polymer Configuration to Accelerate Cation Intercalation Kinetics for High-Performance Aqueous Zinc-Ion Batteries
    Wang, Xinlei
    Tang, Jian
    Tang, Weihua
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (27)
  • [35] Cathode-Electrolyte Interface Modification by Binder Engineering for High-Performance Aqueous Zinc-Ion Batteries
    Dong, Haobo
    Liu, Ruirui
    Hu, Xueying
    Zhao, Fangjia
    Kang, Liqun
    Liu, Longxiang
    Li, Jianwei
    Tan, Yeshu
    Zhou, Yongquan
    Brett, Dan J. L.
    He, Guanjie
    Parkin, Ivan P. P.
    ADVANCED SCIENCE, 2023, 10 (05)
  • [36] Electrolyte Additive Strategies for Safe and High-Performance Aqueous Zinc-Ion Batteries: A Mini-Review
    Zhang, Da
    Miao, Ling
    Song, Ziyang
    Zheng, Xunwen
    Lv, Yaokang
    Gan, Lihua
    Liu, Mingxian
    ENERGY & FUELS, 2024, 38 (14) : 12510 - 12527
  • [37] Eutectic Electrolyte with Unique Solvation Structure for High-Performance Zinc-Ion Batteries
    Geng, Lishan
    Meng, Jiashen
    Wang, Xuanpeng
    Han, Chunhua
    Han, Kang
    Xiao, Zhitong
    Huang, Meng
    Xu, Peng
    Zhang, Lei
    Zhou, Liang
    Mai, Liqiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (31)
  • [38] Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material
    Weijun Zhou
    Minfeng Chen
    Anran Wang
    Aixiang Huang
    Jizhang Chen
    Xinwu Xu
    Ching-Ping Wong
    Journal of Energy Chemistry , 2021, (01) : 377 - 384
  • [39] Polyacrylamide gel electrolyte for high-performance quasi-solid-state electrochromic devices
    Cai, Haojie
    Chen, Zhe
    Guo, Shuang
    Ma, Dongyun
    Wang, Jinmin
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 256
  • [40] High performance flexible quasi-solid-state zinc-ion hybrid supercapacitors enable by electrode potential adjustment
    Liu, Yongchuan
    Miao, Xiaofei
    Zhang, Xiangxin
    Chen, Sujing
    Chen, Yuanqiang
    Lin, Junhong
    Wang, Wei
    Zhang, Yining
    JOURNAL OF POWER SOURCES, 2021, 495