Time-dependent Ginsburg-Landau simulations of superconducting vortices in three dimensions

被引:0
|
作者
Lara, Antonio [1 ]
González-Ruano, César [1 ]
Aliev, Farkhad G. [1 ]
机构
[1] Dpto. Física de la Materia Condensada C-III, Instituto Nicolás Cabrera (INC), Condensed Matter Physics Institute (IFIMAC), Universidad Autónoma de Madrid, Madrid,28049, Spain
来源
Fizika Nizkikh Temperatur | 2020年 / 46卷 / 04期
关键词
Superconducting materials;
D O I
暂无
中图分类号
学科分类号
摘要
Here we describe the development of a computer algorithm to simulate the Time-Dependent Ginzburg-Landau equation (TDGL) and its application to understand superconducting vortex dynamics in confined geometries. Our initial motivation to get involved in this task was trying to understand better our experimental measurements on the dynamics of superconductors with vortices at high frequencies leading to microwave stimulated superconductivity due to the presence of vortex. © Antonio Lara, César González-Ruano, and Farkhad G. Aliev, 2020.
引用
收藏
页码:386 / 394
相关论文
共 50 条
  • [21] TIME-DEPENDENT GINZBURG-LANDAU EQUATION FOR SUPERCONDUCTING ALLOYS IN HIGH MAGNETIC FIELDS
    WELLER, W
    PHYSICA STATUS SOLIDI, 1969, 35 (02): : 573 - &
  • [22] Time-dependent Landau system and non-adiabatic Berry phase in two dimensions
    Jing, H
    Wu, JS
    CHINESE PHYSICS, 2000, 9 (07): : 481 - 484
  • [23] Local minimizers with vortices to the Ginzburg-Landau system in three dimensions
    Montero, JA
    Sternberg, P
    Ziemer, WP
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (01) : 99 - 125
  • [24] The time-dependent Schrodinger equation in three dimensions under geometric constraints
    Petreska, Irina
    de Castro, Antonio S. M.
    Sandev, Trifce
    Lenzi, Ervin K.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (03)
  • [25] Classical solutions to the time-dependent Ginzburg-Landau equations for a bounded superconducting body in a vacuum
    Bauman, P
    Jadallah, H
    Phillips, D
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (09)
  • [26] STOCHASTIC LANDAU EQUATION WITH TIME-DEPENDENT DRIFT
    SWIFT, JB
    HOHENBERG, PC
    AHLERS, G
    PHYSICAL REVIEW A, 1991, 43 (12): : 6572 - 6580
  • [27] Extended Time-Dependent Ginzburg–Landau Theory
    Konstantin V. Grigorishin
    Journal of Low Temperature Physics, 2021, 203 : 262 - 308
  • [28] Hybrid Time-Dependent Ginzburg-Landau Simulations of Block Copolymer Nanocomposites: Nanoparticle Anisotropy
    Diaz, Javier
    Pinna, Marco
    Zvelindovsky, Andrei V.
    Pagonabarraga, Ignacio
    POLYMERS, 2022, 14 (09)
  • [29] TIME-DEPENDENT MAGNETIZATION OF A SUPERCONDUCTING GLASS
    TUOMINEN, M
    GOLDMAN, AM
    MECARTNEY, ML
    PHYSICAL REVIEW B, 1988, 37 (01): : 548 - 551
  • [30] Optimization of vortex pinning by nanoparticles using simulations of the time-dependent Ginzburg-Landau model
    Koshelev, A. E.
    Sadovskyy, I. A.
    Phillips, C. L.
    Glatz, A.
    PHYSICAL REVIEW B, 2016, 93 (06)