Boosting H2O2 activation by Cu and Ce co-doped g-C3N4 for pollutants removal: From the free radical pathway to the non-free radical pathway

被引:0
|
作者
Zou, Qinghua [1 ,2 ]
Shi, Qingkai [1 ,2 ]
Cheng, Min [1 ,2 ]
Wang, Guangfu [1 ,2 ]
Wang, Wenjun [3 ]
Chen, Yongxi [1 ,2 ]
Chen, Ao [1 ,2 ]
Ma, Yuting [1 ,2 ]
机构
[1] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Peoples R China
[2] Hunan Univ, Key Lab Environm Biol & Pollut Control, Minist Educ, Changsha 410082, Peoples R China
[3] Hunan Univ Technol & Business, Sch Resources & Environm, Changsha 410205, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Fenton-like; Graphitic carbon nitride; Hydrogen peroxide; Organic pollutant; DEGRADATION; TETRACYCLINE; OXIDATION; PHOTOCATALYST; PERFORMANCE; SYSTEMS;
D O I
10.1016/j.jece.2024.114808
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recently, materials synthesized by combining graphitic carbon nitride (g-C3N4) and metallic material have caught a lot of attention because of their high catalytic activity. In this paper, a novel g-C3N4 catalyst doped with Cu and Ce (labeled as CuCe-CN) is presented. CuCe-CN can effectively activate H2O2 to degrade tetracycline hydrochloride (TC-HCl) and cause TC-HCl to be completely degraded within one hour. The presence of CeO2 in catalyst provides the redox electron pairs of Ce(IV) and Ce(III), and also facilitates the generation of 1 O 2 during the experimental process. By comparing the main active substances of CuCe-CN and Cu-CN, the fact that the doping of Ce changes the degradation pathway from free radical pathway to non-free radical pathway can be found. It can be demonstrated by electrochemical tests that the doping of Ce promotes the electron transfer in CuCe-CN, which can benefit the generation of reactive oxidation species (ROS), especially 1 O 2 . CuCe-CN/H2O2 system has a good adaptability to the changes of environment. The catalytic performance of CuCe-CN does not be negatively affected by inorganic salt ions, and maintains high activity in natural aqueous environments. In this research, a new method for optimizing the activation behavior of g-C3N4 and a new non-free radical degradation method of TC-HCl were provided.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Sulfur and carbon co-doped g-C3N4 microtubes with enhanced photocatalytic H2 production activity
    Ge, Yang
    Shen, Quanhao
    Zhang, Qi
    Li, Naixu
    Lu, Danchen
    Zhang, Zhaoming
    Fu, Zhiwei
    Zhou, Jiancheng
    FRONTIERS IN ENERGY, 2024, 18 (01) : 110 - 121
  • [42] Enhanced PMS activation by Mn2O3-loaded h-BN for levofloxacin removal: Unveiling the dominant influence of non-free radical pathway and N-Mn-mediated promotion of stable, long-lived Mn(IV) species
    Zhao, Qingzi
    Wu, Yizhou
    Zhang, Xinxi
    Zhou, Liang
    Lu, Sitong
    Zhang, Jinlong
    Liu, Yongdi
    Lei, Juying
    APPLIED SURFACE SCIENCE, 2024, 657
  • [43] Boosting photocatalytic H2 evolution in B-doped g-C3N4/O-doped g-C3N4 through synergistic band structure engineering and homojunction formation
    Hong, Inju
    Chen, Yi-An
    Shih, Jen-An
    Jung, Huiju
    Yun, Yongju
    Pu, Ying-Chih
    Hsu, Yung-Jung
    Moon, Hyun Sik
    Yong, Kijung
    APPLIED SURFACE SCIENCE, 2025, 679
  • [44] Comparison of visible light driven H2O2 and peroxymonosulfate degradation of norfloxacin using Co/g-C3N4
    Zhang, Wenhai
    Bian, Zhaoyong
    Xin, Xin
    Wang, Li
    Geng, Xinle
    Wang, Hui
    CHEMOSPHERE, 2021, 262
  • [45] Facile synthesis of Mn, Ce co-doped g-C3N4 composite for peroxymonosulfate activation towards organic contaminant degradation
    Lai, Cui
    Yan, Huchuan
    Wang, Dongbo
    Liu, Shiyu
    Zhou, Xuerong
    Li, Xiaopei
    Zhang, Mingming
    Li, Ling
    Fu, Yukui
    Xu, Fuhang
    Yang, Xiaofeng
    Huo, Xiuqin
    CHEMOSPHERE, 2022, 293
  • [46] Efficient degradation of tetracycline by persulfate activation with Fe, Co and O co-doped g-C3N4: Performance, mechanism and toxicity
    Wu, Zhibin
    Tong, Zhijun
    Xie, Yuanyuan
    Sun, Haibo
    Gong, Xiaomin
    Qin, Pufeng
    Liang, Yunshan
    Yuan, Xingzhong
    Zou, Dongsheng
    Jiang, Longbo
    CHEMICAL ENGINEERING JOURNAL, 2022, 434
  • [47] Dual defect sites at g-C3N4 synergistically induce the electron localization effect for boosting photocatalytic H2O2 production
    Jiang, Jingjing
    Chen, Yuyao
    Zhou, Shijian
    Xie, Haoran
    Li, Changlai
    Wei, Zheng
    Kong, Yan
    CATALYSIS SCIENCE & TECHNOLOGY, 2024, 14 (22) : 6701 - 6709
  • [48] Hydroxyl-modified g-C3N4/Al2O3 heterojunction connected with oxygen bridge for boosting photocatalytic H2O2 production
    Qu, Junnan
    Zhang, Yinghua
    Liang, Xiaoli
    Zheng, Yanmei
    Li, Yuying
    Ren, Jingxuan
    Guo, Xinli
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 359
  • [49] Decomposition and mineralization of glyphosate herbicide in water by radical and non-radical pathways through peroxymonosulfate activation using Co3O4/g-C3N4: a comprehensive study
    Dung, Nguyen Trung
    Hanh, Phung Thi Hong
    Thao, Vu Dinh
    Ngan, Le Viet
    Thuy, Nguyen Thi
    Thanh, Dinh Thi Mai
    Phuong, Nguyen Thu
    Lin, Kun-Yi Andrew
    Huy, Nguyen Nhat
    ENVIRONMENTAL SCIENCE-WATER RESEARCH & TECHNOLOGY, 2022, 9 (01) : 221 - 234
  • [50] Enhanced photocatalytic degradation performance of In2O3/g-C3N4 composites by coupling with H2O2
    Liu, Wei
    Zhang, Jin
    Kang, Qun
    Chen, Hongbing
    Feng, Ru
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2023, 252