Boosting H2O2 activation by Cu and Ce co-doped g-C3N4 for pollutants removal: From the free radical pathway to the non-free radical pathway

被引:0
|
作者
Zou, Qinghua [1 ,2 ]
Shi, Qingkai [1 ,2 ]
Cheng, Min [1 ,2 ]
Wang, Guangfu [1 ,2 ]
Wang, Wenjun [3 ]
Chen, Yongxi [1 ,2 ]
Chen, Ao [1 ,2 ]
Ma, Yuting [1 ,2 ]
机构
[1] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Peoples R China
[2] Hunan Univ, Key Lab Environm Biol & Pollut Control, Minist Educ, Changsha 410082, Peoples R China
[3] Hunan Univ Technol & Business, Sch Resources & Environm, Changsha 410205, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2024年 / 12卷 / 06期
基金
中国国家自然科学基金;
关键词
Fenton-like; Graphitic carbon nitride; Hydrogen peroxide; Organic pollutant; DEGRADATION; TETRACYCLINE; OXIDATION; PHOTOCATALYST; PERFORMANCE; SYSTEMS;
D O I
10.1016/j.jece.2024.114808
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Recently, materials synthesized by combining graphitic carbon nitride (g-C3N4) and metallic material have caught a lot of attention because of their high catalytic activity. In this paper, a novel g-C3N4 catalyst doped with Cu and Ce (labeled as CuCe-CN) is presented. CuCe-CN can effectively activate H2O2 to degrade tetracycline hydrochloride (TC-HCl) and cause TC-HCl to be completely degraded within one hour. The presence of CeO2 in catalyst provides the redox electron pairs of Ce(IV) and Ce(III), and also facilitates the generation of 1 O 2 during the experimental process. By comparing the main active substances of CuCe-CN and Cu-CN, the fact that the doping of Ce changes the degradation pathway from free radical pathway to non-free radical pathway can be found. It can be demonstrated by electrochemical tests that the doping of Ce promotes the electron transfer in CuCe-CN, which can benefit the generation of reactive oxidation species (ROS), especially 1 O 2 . CuCe-CN/H2O2 system has a good adaptability to the changes of environment. The catalytic performance of CuCe-CN does not be negatively affected by inorganic salt ions, and maintains high activity in natural aqueous environments. In this research, a new method for optimizing the activation behavior of g-C3N4 and a new non-free radical degradation method of TC-HCl were provided.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Introducing B-N unit boosts photocatalytic H2O2 production on metal-free g-C3N4 nanosheets
    Wang, Weikang
    Zhang, Wei
    Cai, Yueji
    Wang, Qing
    Deng, Juan
    Chen, Jingsheng
    Jiang, Zhifeng
    Zhang, Yizhou
    Yu, Chao
    NANO RESEARCH, 2022,
  • [22] Carbon layer derived carrier transport in Co/g-C3N4 nanosheet junctions for efficient H2O2 production and NO removal
    Zhang, Xiao
    Yang, Ping
    Chen, Hsueh Shih
    Jiang, San Ping
    CHEMICAL ENGINEERING JOURNAL, 2024, 479
  • [23] Introducing oxygen-doped g-C3N4 onto g-C3N4/TiO2 heterojunction for efficient catalytic gatifloxacin degradation and H2O2 production
    Gan, Wei
    Guo, Jun
    Fu, Xucheng
    Jin, Juncheng
    Zhang, Miao
    Chen, Ruixin
    Ding, Chunsheng
    Lu, Yuqing
    Li, Jianrou
    Sun, Zhaoqi
    SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 317
  • [24] Effect of Photodeposited Noble Metal Nanoparticles on the Sacrificial-Agent-Free H2O2 Photosynthesis Performance of g-C3N4
    Wang, Guodan
    Huang, Tengfei
    Tan, Yongsheng
    Liu, Shiyan
    Wu, Rong
    Fang, Zebo
    Yang, Baocheng
    Wei, Shunhang
    ACS APPLIED NANO MATERIALS, 2025, 8 (12) : 6125 - 6132
  • [25] K-doped g-C3N4 decorated with Ti3C2 for efficient photocatalytic H2O2 production
    Zhou, Suyu
    Cheng, Shaoli
    Han, Junhe
    Huang, Mingju
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (41) : 19063 - 19076
  • [26] Co-doped Mo-Mo2C cocatalyst for enhanced g-C3N4 photocatalytic H2 evolution
    Zheng, Yaru
    Dong, Jie
    Huang, Cunping
    Xia, Ligang
    Wu, Qiang
    Xu, Qunjie
    Yao, Weifeng
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 260 (260)
  • [27] Uranyl(VI) boosting 3D g-C3N4 photocatalytic H2O2 production for U (VI) immobilization
    Wang, Huihui
    Mei, Peng
    Huang, Xinshui
    Xiao, Jingting
    Sun, Yubing
    JOURNAL OF CLEANER PRODUCTION, 2022, 330
  • [28] Efficient photocatalytic H2O2 production over K+-intercalated crystalline g-C3N4 with regulated oxygen reduction pathway
    Zhang, Qiqi
    Wang, Bing
    Miao, Hui
    Fan, Jun
    Sun, Tao
    Liu, Enzhou
    CHEMICAL ENGINEERING JOURNAL, 2024, 482
  • [29] Controlled synthesis of hollow carbon ring incorporated g-C3N4 tubes for boosting photocatalytic H2O2 production
    Luo, Hao
    Shan, Tianshang
    Zhou, Jianwen
    Huang, Liulian
    Chen, Lihui
    Sa, Rongjian
    Yamauchi, Yusuke
    You, Jungmok
    Asakura, Yusuke
    Yuan, Zhanhui
    Xiao, He
    APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 337
  • [30] Boosting O2 Reduction and H2O Dehydrogenation Kinetics: Surface N-Hydroxymethylation of g-C3N4 Photocatalysts for the Efficient Production of H2O2
    Liu, Binyao
    Du, Jinyan
    Ke, Gaili
    Jia, Bi
    Huang, Yujie
    He, Huichao
    Zhou, Yong
    Zou, Zhigang
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (15)