Monocular 3D Object Detection for Autonomous Driving Based on Contextual Transformer

被引:0
|
作者
She, Xiangyang [1 ]
Yan, Weijia [1 ]
Dong, Lihong [1 ]
机构
[1] College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an,710054, China
关键词
D O I
10.3778/j.issn.1002-8331.2307-0084
中图分类号
学科分类号
摘要
Aiming at the current problems of leakage and poor multi-scale target detection in monocular 3D object detection, a monocular 3D object detection algorithm for autonomous driving based on Contextual Transformer (CM-RTM3D) is proposed. Firstly, Contextual Transformer (CoT) is introduced into the ResNet-50 network to construct the ResNet-Transformer architecture for feature extraction. Secondly, the multi-scale spatial perception (MSP) module is designed to improve the loss of shallow features through scale-space response operations, embedding the coordinate attention mechanism (CA) along both horizontal and vertical spatial directions, and generating soft weights of importance at each scale using the softmax function. Finally, the Huber loss function is used instead of the L1 loss function in the offset loss. The experimental results show that, compared with the RTM3D algorithm on the KITTI autopilot dataset, the algorithm in this paper improves AP3D by 4.84, 3.82, and 5.36 percentage points, and APBEV by 4.75, 6.26, and 3.56 percentage points, respectively, at the three difficulty levels of easy, medium, and difficult. © 2024 Journal of Computer Engineering and Applications Beijing Co., Ltd.; Science Press. All rights reserved.
引用
收藏
页码:178 / 189
相关论文
共 50 条
  • [41] A Review of 3D Object Detection for Autonomous Driving of Electric Vehicles
    Dai, Deyun
    Chen, Zonghai
    Bao, Peng
    Wang, Jikai
    WORLD ELECTRIC VEHICLE JOURNAL, 2021, 12 (03)
  • [42] Aerial Monocular 3D Object Detection
    Hu, Yue
    Fang, Shaoheng
    Xie, Weidi
    Chen, Siheng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (04) : 1959 - 1966
  • [43] Disentangling Monocular 3D Object Detection
    Simonelli, Andrea
    Bulo, Samuel Rota
    Porzi, Lorenzo
    Lopez-Antequera, Manuel
    Kontschieder, Peter
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1991 - 1999
  • [44] Monocular 3D Object Detection Based on Pseudo-LiDAR Point Cloud for Autonomous Vehicles
    Wang, Yijing
    Xu, Sheng
    Zuo, Zhiqiang
    Li, Zheng
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5469 - 5474
  • [45] TEMPORAL AXIAL ATTENTION FOR LIDAR-BASED 3D OBJECT DETECTION IN AUTONOMOUS DRIVING
    Carranza-Garcia, Manuel
    Riquelme, Jose C.
    Zakhor, Avideh
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 201 - 205
  • [46] Exploring Diversity-Based Active Learning for 3D Object Detection in Autonomous Driving
    Lin, Jinpeng
    Liang, Zhihao
    Deng, Shengheng
    Cai, Lile
    Jiang, Tao
    Li, Tianrui
    Jia, Kui
    Xu, Xun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (11) : 15454 - 15466
  • [47] SPADE: Sparse Pillar-based 3D Object Detection Accelerator for Autonomous Driving
    Lee, Minjae
    Park, Seongmin
    Kim, Hyungmin
    Yoon, Minyong
    Lee, Janghwan
    Choi, Jun Won
    Kim, Nam Sung
    Kang, Mingu
    Choi, Jungwook
    2024 IEEE INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE COMPUTER ARCHITECTURE, HPCA 2024, 2024, : 454 - 467
  • [48] A Survey on Deep-Learning-Based LiDAR 3D Object Detection for Autonomous Driving
    Alaba, Simegnew Yihunie
    Ball, John E.
    SENSORS, 2022, 22 (24)
  • [49] GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving
    Li, Buyu
    Ouyang, Wanli
    Sheng, Lu
    Zeng, Xingyu
    Wang, Xiaogang
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1019 - 1028
  • [50] POAT-Net: Parallel Offset-Attention Assisted Transformer for 3D Object Detection for Autonomous Driving
    Wang, Jinyang
    Lin, Xiao
    Yu, Hongying
    IEEE ACCESS, 2021, 9 : 151110 - 151117