Monocular 3D Object Detection Based on Pseudo-LiDAR Point Cloud for Autonomous Vehicles

被引:0
|
作者
Wang, Yijing [1 ]
Xu, Sheng [1 ]
Zuo, Zhiqiang [1 ]
Li, Zheng [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin Key Lab Proc Measurement & Control, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
3D object detection; pseudo-LiDAR point cloud; image morphing; depth estimation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pseudo-LiDAR point clouds are generated from monocular image. Compared with the point cloud from LiDAR, it can provide denser data. Due to the inaccuracy of depth estimation, there is still a performance gap between the pseudo-LiDAR point cloud and the LiDAR one. In this paper, we propose an approach to eliminate the performance degradation caused by deviation of depth estimation and realize 3D object detection based on pseudo-LiDAR point cloud. Comparative results on KITTI 3D benchmark illustrate that in contrast to other methods, our scheme can achieve more reliable performance on both object localization and shape estimation.
引用
收藏
页码:5469 / 5474
页数:6
相关论文
共 50 条
  • [1] Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud
    Weng, Xinshuo
    Kitani, Kris
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 857 - 866
  • [2] Is Pseudo-Lidar needed for Monocular 3D Object detection?
    Park, Dennis
    Ambrus, Rares
    Guizilini, Vitor
    Li, Jie
    Gaidon, Adrien
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3122 - 3132
  • [3] Real Pseudo-Lidar Point Cloud Fusion for 3D Object Detection
    Fan, Xiangsuo
    Xiao, Dachuan
    Cai, Dengsheng
    Ding, Wentao
    [J]. ELECTRONICS, 2023, 12 (18)
  • [4] Self-supervised 3D Object Detection from Monocular Pseudo-LiDAR
    Kim, Curie
    Kim, Ue-Hwan
    Kim, Jong-Hwan
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2022,
  • [5] Monocular 3D Object Detection From Comprehensive Feature Distillation Pseudo-LiDAR
    Sun, Chentao
    Xu, Chengrui
    Fang, Wenxiao
    Xu, Kunyuan
    [J]. IEEE ACCESS, 2023, 11 : 98969 - 98976
  • [6] Are we Missing Confidence in Pseudo-LiDAR Methods for Monocular 3D Object Detection?
    Simonelli, Andrea
    Bulo, Samuel Rota
    Porzi, Lorenzo
    Kontschieder, Peter
    Ricci, Elisa
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 3205 - 3213
  • [7] Efficient 3D Object Detection Based on Pseudo-LiDAR Representation
    Meng, Haitao
    Li, Changcai
    Chen, Gang
    Chen, Long
    Knoll, Alois
    [J]. IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 1953 - 1964
  • [8] Lidar Point Cloud Guided Monocular 3D Object Detection
    Peng, Liang
    Liu, Fei
    Yu, Zhengxu
    Yan, Senbo
    Deng, Dan
    Yang, Zheng
    Liu, Haifeng
    Cai, Deng
    [J]. COMPUTER VISION - ECCV 2022, PT I, 2022, 13661 : 123 - 139
  • [9] Monocular Pseudo-LiDAR Point Cloud Extrapolation Based on Iterative Hybrid Rendering
    Zhang, Chunlan
    Lin, Chunyu
    Liao, Kang
    Huang, Shujuan
    Zhao, Yao
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (03) : 2814 - 2826
  • [10] Pseudo-LiDAR Point Cloud Interpolation Based on 3D Motion Representation and Spatial Supervision
    Liu, Haojie
    Liao, Kang
    Lin, Chunyu
    Zhao, Yao
    Guo, Yulan
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (07) : 6379 - 6389