Survival ensemble with sparse random projections for censored clinical and gene expression data

被引:0
|
作者
Zhou L. [1 ]
Wang H. [1 ]
Xu Q. [1 ]
机构
[1] School of Mathematics and Statistics, Central South University
来源
Wang, Hong (wh@csu.edu.cn) | 1600年 / Information Processing Society of Japan卷 / 09期
关键词
Censored data; Gene expression; High-dimensional; Random projection; Survival ensemble;
D O I
10.2197/ipsjtbio.9.18
中图分类号
学科分类号
摘要
Random projection is a powerful method for dimensionality reduction while its applications in high-dimensional survival analysis is rather limited. In this research, we propose a novel survival ensemble model based on sparse random projection and survival trees. Supported by the proper statistical analysis, we show that the proposed model is comparable to or better than popular survival models such as random survival forest, regularized Cox proportional hazard and fast cocktail models on high-dimensional microarray gene expression right censored data. © 2016 Information Processing Society of Japan.
引用
收藏
页码:18 / 23
页数:5
相关论文
共 50 条
  • [21] Cluster ensemble for gene expression Microarray data
    de Souto, MCP
    Silva, SCM
    Bittencourtt, VG
    de Araujo, DSA
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 487 - 492
  • [22] Sparse Learner Boosting for gene expression data
    Pritchard M.
    IPSJ Transactions on Bioinformatics, 2010, 3 : 54 - 61
  • [23] Sparse factorizations of gene expression data guided by binding data
    Badea, L
    Tilivea, D
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2005, 2005, : 447 - 458
  • [24] Mixture cure model with random effects for clustered interval-censored survival data
    Xiang, Liming
    Ma, Xiangmei
    Yau, Kelvin K. W.
    STATISTICS IN MEDICINE, 2011, 30 (09) : 995 - 1006
  • [25] Estimation of Conditional Jointly Survival Function Under Dependent Right Random Censored Data
    Abdushukurov, A. A.
    Muradov, R. S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (09) : 2360 - 2369
  • [26] Gene expression data and survival analysis
    Park, PJ
    METHODS OF MICROARRAY DATA ANALYSIS IV, 2005, : 21 - 34
  • [27] Estimation of Conditional Jointly Survival Function Under Dependent Right Random Censored Data
    A. A. Abdushukurov
    R. S. Muradov
    Lobachevskii Journal of Mathematics, 2022, 43 : 2360 - 2369
  • [28] A new regression model for the analysis of bimodal censored data: A comparison with random survival forest
    Rodrigues, Gabriela M.
    Ortega, Edwin M. M.
    Vila, Roberto
    Moral, Rafael De Andrade
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2024, 38 (03) : 347 - 369
  • [29] Ensemble Cuckoo Search Biclustering of the gene expression data
    Yin, Lu
    Liu, Yongguo
    2016 IEEE 15TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC), 2016, : 419 - 422
  • [30] Sparse graphical models for exploring gene expression data
    Dobra, A
    Hans, C
    Jones, B
    Nevins, JR
    Yao, GA
    West, M
    JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 90 (01) : 196 - 212