A Liouville theorem for a class of reaction–diffusion systems with fractional diffusion

被引:0
|
作者
Guo, Jong-Shenq [1 ]
Shimojo, Masahiko [2 ]
机构
[1] Department of Mathematics, Tamkang University, Tamsui, New Taipei City,251301, Taiwan
[2] Department of Mathematical Sciences, Tokyo Metropolitan University, Hachioji, Tokyo,192-0397, Japan
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Novel patterns in a class of fractional reaction-diffusion models with the Riesz fractional derivative
    Che, Han
    Yu-Lan, Wang
    Zhi-Yuan, Li
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 202 : 149 - 163
  • [42] A class of efficient difference method for time fractional reaction–diffusion equation
    Junxia Zhang
    Xiaozhong Yang
    Computational and Applied Mathematics, 2018, 37 : 4376 - 4396
  • [43] ASYMPTOTIC SYMMETRY FOR A CLASS OF NONLINEAR FRACTIONAL REACTION-DIFFUSION EQUATIONS
    Jarohs, Sven
    Weth, Tobias
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (06) : 2581 - 2615
  • [44] Statistical solutions and piecewise Liouville theorem for the impulsive reaction-diffusion equations on infinite lattices
    Zhao, Caidi
    Jiang, Huite
    Caraballo, Tomás
    Applied Mathematics and Computation, 2021, 404
  • [45] Statistical solutions and piecewise Liouville theorem for the impulsive reaction-diffusion equations on infinite lattices
    Zhao, Caidi
    Jiang, Huite
    Caraballo, Tomas
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 404
  • [46] Mathematical modeling of time fractional reaction-diffusion systems
    Gafiychuk, V.
    Datsko, B.
    Meleshko, V.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 220 (1-2) : 215 - 225
  • [47] Inhomogeneous oscillatory structures in fractional reaction-diffusion systems
    Gafiychuk, V.
    Datsko, B.
    PHYSICS LETTERS A, 2008, 372 (05) : 619 - 622
  • [48] Modeling Riemann-Liouville fractional differential equations for diffusion and reaction in fractal porous media
    Zhang, Peng
    Li, Ping
    Xiu, Guohua
    Rodrigues, Alirio E.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2021, 59 (02) : 459 - 475
  • [49] A limit theorem to a time-fractional diffusion
    Clark, Jeremy Thane
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2013, 10 (01): : 117 - 156