A Liouville theorem for a class of reaction–diffusion systems with fractional diffusion

被引:0
|
作者
Guo, Jong-Shenq [1 ]
Shimojo, Masahiko [2 ]
机构
[1] Department of Mathematics, Tamkang University, Tamsui, New Taipei City,251301, Taiwan
[2] Department of Mathematical Sciences, Tokyo Metropolitan University, Hachioji, Tokyo,192-0397, Japan
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] A class of fractional parabolic reaction-diffusion systems with control of total mass: theory and numerics
    Daoud, Maha
    Laamri, El-Haj
    Baalal, Azeddine
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (01)
  • [22] Distributed robust control for a class of semilinear fractional-order reaction-diffusion systems
    Zhao, Ailiang
    Li, Junmin
    Lei, Yanfang
    NONLINEAR DYNAMICS, 2022, 109 (03) : 1743 - 1762
  • [23] Liouville theorems and blow up behaviour in semilinear reaction diffusion systems
    Andreucci, D
    Herrero, MA
    Velazquez, JJL
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (01): : 1 - 53
  • [24] Global solvability of a class of reaction-diffusion systems with cross-diffusion
    Wang, Zhi-An
    Wu, Leyun
    APPLIED MATHEMATICS LETTERS, 2022, 124
  • [25] Front dynamics in reaction-diffusion systems with Levy flights: A fractional diffusion approach
    del-Castillo-Negrete, D
    Carreras, BA
    Lynch, VE
    PHYSICAL REVIEW LETTERS, 2003, 91 (01)
  • [26] Modeling Riemann–Liouville fractional differential equations for diffusion and reaction in fractal porous media
    Peng Zhang
    Ping Li
    Guohua Xiu
    Alirio E. Rodrigues
    Journal of Mathematical Chemistry, 2021, 59 : 459 - 475
  • [27] On the applications of a global bifurcation theorem to the reaction-diffusion systems
    Huy, NB
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (10) : 1199 - 1206
  • [28] On the applications of a global bifurcation theorem to the reaction-diffusion systems
    Huy, Nguyen Bich
    Nonlinear Analysis, Theory, Methods and Applications, 1996, 27 (10): : 1199 - 1206
  • [29] Fractional reaction-diffusion
    Henry, BI
    Wearne, SL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2000, 276 (3-4) : 448 - 455
  • [30] CONVERGENCE TO EQUILIBRIA FOR A CLASS OF REACTION-DIFFUSION SYSTEMS
    ENGLER, H
    HETZER, G
    OSAKA JOURNAL OF MATHEMATICS, 1992, 29 (03) : 471 - 481