Orthonormal wavelet basis based on the tight frame

被引:0
|
作者
Zhao, Ruizhen
Song, Guoxiang
Wang, Weiwei
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:49 / 51
相关论文
共 50 条
  • [41] An ε-approximate solution of BVPs based on improved multiscale orthonormal basis
    Zhang, Yingchao
    Jia, Yuntao
    Lin, Yingzhen
    AIMS MATHEMATICS, 2024, 9 (03): : 5810 - 5826
  • [42] On the geometry of orthonormal frame bundles II
    Kowalski, Oldrich
    Sekizawa, Masami
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2008, 33 (04) : 357 - 371
  • [43] On the geometry of orthonormal frame bundles II
    Oldřich Kowalski
    Masami Sekizawa
    Annals of Global Analysis and Geometry, 2008, 33 : 357 - 371
  • [44] ORTHONORMAL DILATIONS OF NON-TIGHT FRAMES
    Bownik, Marcin
    Jasper, John
    Speegle, Darrin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (09) : 3247 - 3256
  • [45] ISOMETRY GROUPS OF ORTHONORMAL FRAME BUNDLES
    FISHER, RJ
    LEE, KB
    GEOMETRIAE DEDICATA, 1986, 21 (02) : 181 - 186
  • [46] Regular orthonormal and biorthogonal wavelet filters
    Cooklev, T
    Nishihara, A
    Sablatash, M
    SIGNAL PROCESSING, 1997, 57 (02) : 121 - 137
  • [47] Optimal orthonormal wavelet in subband coding
    Inst of System Science, Chinese Acad of Science, Beijing, China
    Zidonghua Xuebao/Acta Automatica Sinica, 1997, 23 (02): : 180 - 186
  • [48] A new family of orthonormal wavelet bases
    L. T. Liu
    H. T. Hsu
    B. X. Gao
    Journal of Geodesy, 1998, 72 : 294 - 303
  • [49] Design of orthonormal and overcomplete wavelet transforms based on rational sampling factors
    Bayram, Ilker
    Selesnick, Ivan W.
    WAVELET APPLICATIONS IN INDUSTRIAL PROCESSING V, 2007, 6763
  • [50] Fault detection based on orthonormal wavelet transform of system impulse response
    Ye, H
    Wang, GZ
    Fang, CZ
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 1135 - 1138