Pattern classification of fabric defects using a probabilistic neural network and its hardware implementation using the field programmable gate array system

被引:0
|
作者
Hasnat A. [1 ]
Ghosh A. [1 ]
Khatun A. [2 ]
Halder S. [3 ]
机构
[1] Government College of Engineering & Textile Technology, Berhampore, West Bengal
[2] Jadavpur University, Kolkata, West Bengal
[3] Government Govt. College of Engineering and Leather Technology, Kolkata, West Bengal
来源
| 1600年 / Lukasiewicz Research Network - Institute of Biopolymers and Chemical Fibres卷 / 25期
关键词
Classification; Fabric defect; Field programmable gate arrays; Probabilistic neural network; Radial basis function;
D O I
10.5604/01.3001.0010.1709
中图分类号
学科分类号
摘要
This study proposes a fabric defect classification system using a Probabilistic Neural Network (PNN) and its hardware implementation using a Field Programmable Gate Arrays (FPGA) based system. The PNN classifier achieves an accuracy of 98 ± 2% for the test data set, whereas the FPGA based hardware system of the PNN classifier realises about 94±2% testing accuracy. The FPGA system operates as fast as 50.777 MHz, corresponding to a clock period of 19.694 ns. © 2017, Institute of Biopolymers and Chemical Fibres. All rights reserved.
引用
收藏
页码:42 / 48
页数:6
相关论文
共 50 条
  • [31] Implementation of linear model predictive control using a field-programmable gate array
    Mills, A.
    Wills, A. G.
    Weller, S. R.
    Ninness, B.
    IET CONTROL THEORY AND APPLICATIONS, 2012, 6 (08): : 1042 - 1054
  • [32] HEPWM Implementation for Fifteen Level Cascaded Inverter Using Field Programmable Gate Array
    Majed, Ahmed
    Salam, Zainal
    Amjad, Abdul Moeed
    2014 IEEE CONFERENCE ON ENERGY CONVERSION (CENCON), 2014, : 331 - 335
  • [33] Implementation of a new chaotic system based on field programmable gate array
    Shao Shu-Yi
    Min Fu-Hong
    Wu Xue-Hong
    Zhang Xin-Guo
    ACTA PHYSICA SINICA, 2014, 63 (06)
  • [34] REAL-TIME CLASSIFICATION OF OBJECTS BY COLOR USING FIELD PROGRAMMABLE GATE ARRAY
    Tamayo Monsalve, Manuel Alejandro
    Montes Castrillon, Nubia Liliana
    Osorio Londono, Gustavo Adolfo
    REVISTA DE INVESTIGACIONES-UNIVERSIDAD DEL QUINDIO, 2012, 23 (01): : 33 - 39
  • [35] A pulse-coupled neural network simulator using a programmable gate array technique
    Katayama, K
    Iwata, A
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2003, E86D (05) : 872 - 881
  • [36] Implementation of a field programmable gate array based transcranial Doppler ultrasound system using pulse compression techniques
    Gittins, John
    Cowe, Joanne
    Evans, David H.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2007, 2 (01) : 51 - 58
  • [37] Acceleration of Deep Neural Network Training Using Field Programmable Gate Arrays
    Tufa G.T.
    Andargie F.A.
    Bijalwan A.
    Computational Intelligence and Neuroscience, 2022, 2022
  • [38] A new power system restoration and reconfiguration using field programmable Gate Array
    Sathish Kumar, K.
    Belwin Edward, J.
    Saravanan, B.
    Sudhakar, N.
    Prabhakar Karthikeyan, S.
    Ravi, K.
    Journal of Theoretical and Applied Information Technology, 2012, 39 (01) : 88 - 97
  • [39] SIES: A Novel Implementation of Spiking Convolutional Neural Network Inference Engine on Field-Programmable Gate Array
    Shu-Quan Wang
    Lei Wang
    Yu Deng
    Zhi-Jie Yang
    Sha-Sha Guo
    Zi-Yang Kang
    Yu-Feng Guo
    Wei-Xia Xu
    Journal of Computer Science and Technology, 2020, 35 : 475 - 489
  • [40] SIES: A Novel Implementation of Spiking Convolutional Neural Network Inference Engine on Field-Programmable Gate Array
    Wang, Shu-Quan
    Wang, Lei
    Deng, Yu
    Yang, Zhi-Jie
    Guo, Sha-Sha
    Kang, Zi-Yang
    Guo, Yu-Feng
    Xu, Wei-Xia
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2020, 35 (02) : 475 - 489