Pattern classification of fabric defects using a probabilistic neural network and its hardware implementation using the field programmable gate array system

被引:0
|
作者
Hasnat A. [1 ]
Ghosh A. [1 ]
Khatun A. [2 ]
Halder S. [3 ]
机构
[1] Government College of Engineering & Textile Technology, Berhampore, West Bengal
[2] Jadavpur University, Kolkata, West Bengal
[3] Government Govt. College of Engineering and Leather Technology, Kolkata, West Bengal
来源
| 1600年 / Lukasiewicz Research Network - Institute of Biopolymers and Chemical Fibres卷 / 25期
关键词
Classification; Fabric defect; Field programmable gate arrays; Probabilistic neural network; Radial basis function;
D O I
10.5604/01.3001.0010.1709
中图分类号
学科分类号
摘要
This study proposes a fabric defect classification system using a Probabilistic Neural Network (PNN) and its hardware implementation using a Field Programmable Gate Arrays (FPGA) based system. The PNN classifier achieves an accuracy of 98 ± 2% for the test data set, whereas the FPGA based hardware system of the PNN classifier realises about 94±2% testing accuracy. The FPGA system operates as fast as 50.777 MHz, corresponding to a clock period of 19.694 ns. © 2017, Institute of Biopolymers and Chemical Fibres. All rights reserved.
引用
收藏
页码:42 / 48
页数:6
相关论文
共 50 条
  • [1] A low cost implementation neural network using field programmable gate array
    Electrical Engineering Dept, College of Engineering, University of Baghdad, Baghdad, Iraq
    不详
    不详
    Adv Model Anal B, 2006, 1-2 (17-27):
  • [2] Indoor Positioning Using Artificial Neural Network with Field Programmable Gate Array Implementation
    Ngah, Syahrulanuar
    Abu Bakar, Rohani
    Awang, Suryanti
    ADVANCED SCIENCE LETTERS, 2018, 24 (10) : 7598 - 7601
  • [3] Research and implementation of a fabric printing detection system based on a field programmable gate array and deep neural network
    Li, Feng
    Xi, Qinggang
    TEXTILE RESEARCH JOURNAL, 2022, 92 (7-8) : 1060 - 1078
  • [4] A Survey on Hardware Implementation of Cryptographic Algorithms Using Field Programmable Gate Array
    Kumar, Keshav
    Ramkumar, K. R.
    Kaur, Amanpreet
    Choudhary, Somanshu
    2020 IEEE 9TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT 2020), 2020, : 189 - 194
  • [5] Hardware Considerations for Tensor Implementation and Analysis Using the Field Programmable Gate Array
    Grout, Ian
    Mullin, Lenore
    ELECTRONICS, 2018, 7 (11)
  • [6] Hardware Implementation of Road Network Extraction Using Simplified Gabor Wavelet in Field Programmable Gate Array
    Sujatha, C.
    Selvathi, D.
    Lakshmi, S. Karthigai
    INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY INNOVATION, 2018, 8 (03) : 200 - 216
  • [7] Design and implementation of hydrogen economy using artificial neural network on field programmable gate array
    Koyuncu, Ismail
    Yilmaz, Ceyhun
    Alcin, Murat
    Tuna, Murat
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (41) : 20709 - 20720
  • [8] A hardware implementation of artificial neural networks using field programmable gate arrays
    Won, E.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2007, 581 (03): : 816 - 820
  • [9] HARDWARE IMPLEMENTATION OF AN ARTIFICIAL NEURAL-NETWORK USING FIELD-PROGRAMMABLE GATE ARRAYS (FPGAS)
    BOTROS, NM
    ABDULAZIZ, M
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1994, 41 (06) : 665 - 667
  • [10] SV PWM Pattern Generator using Field Programmable Gate Array Implementation
    Ange, Prawin
    Devarajan, N.
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING (IACSIT ICMLC 2009), 2009, : 435 - 439