On the fast reduction of symmetric rationally generated toeplitz matrices to tridiagonal form

被引:0
|
作者
Frederix, K. [1 ]
Gemignani, L. [2 ]
Van Barel, M. [1 ]
机构
[1] Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Leuven (Heverlee), Belgium
[2] Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
关键词
Linear transformations - Eigenvalues and eigenfunctions;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper two fast algorithms that use orthogonal similarity transformations to convert a symmetric rationally generated Toeplitz matrix to tridiagonal form are developed, as a means of finding the eigenvalues of the matrix efficiently. The reduction algorithms achieve cost efficiency by exploiting the rank structure of the input Toeplitz matrix. The proposed algorithms differ in the choice of the generator set for the rank structure of the input Toeplitz matrix. Copyright © 2009, Kent State University.
引用
收藏
页码:129 / 147
相关论文
共 50 条
  • [31] A pivoting strategy for symmetric tridiagonal matrices
    Bunch, JR
    Marcia, RF
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2005, 12 (09) : 911 - 922
  • [32] A quantum eigensolver for symmetric tridiagonal matrices
    Wang, Hefeng
    Xiang, Hua
    QUANTUM INFORMATION PROCESSING, 2019, 18 (03)
  • [33] A quantum eigensolver for symmetric tridiagonal matrices
    Hefeng Wang
    Hua Xiang
    Quantum Information Processing, 2019, 18
  • [34] Inverses of tridiagonal Toeplitz and periodic matrices with applications to mechanics
    Wittenburg, J
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1998, 62 (04): : 575 - 587
  • [35] Determinants and inverses of perturbed periodic tridiagonal Toeplitz matrices
    Wei, Yunlan
    Jiang, Xiaoyu
    Jiang, Zhaolin
    Shon, Sugoog
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [36] QL Method for Symmetric Tridiagonal Matrices
    蒋尔雄
    Journal of Shanghai University, 2004, (04) : 369 - 377
  • [37] The inverses and eigenpairs of tridiagonal Toeplitz matrices with perturbed rows
    Yunlan Wei
    Yanpeng Zheng
    Zhaolin Jiang
    Sugoog Shon
    Journal of Applied Mathematics and Computing, 2022, 68 : 623 - 636
  • [38] Inversion of k-tridiagonal matrices with Toeplitz structure
    Jia, Jiteng
    Sogabe, Tomohiro
    El-Mikkawy, Moawwad
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (01) : 116 - 125
  • [39] ON THE EIGENVECTORS OF SYMMETRIC TOEPLITZ MATRICES
    MAKHOUL, J
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1981, 29 (04): : 868 - 872
  • [40] Analytical inversion of symmetric tridiagonal matrices
    Hu, GY
    OConnell, RF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (07): : 1511 - 1513