On the fast reduction of symmetric rationally generated toeplitz matrices to tridiagonal form

被引:0
|
作者
Frederix, K. [1 ]
Gemignani, L. [2 ]
Van Barel, M. [1 ]
机构
[1] Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A, B-3001 Leuven (Heverlee), Belgium
[2] Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
关键词
Linear transformations - Eigenvalues and eigenfunctions;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper two fast algorithms that use orthogonal similarity transformations to convert a symmetric rationally generated Toeplitz matrix to tridiagonal form are developed, as a means of finding the eigenvalues of the matrix efficiently. The reduction algorithms achieve cost efficiency by exploiting the rank structure of the input Toeplitz matrix. The proposed algorithms differ in the choice of the generator set for the rank structure of the input Toeplitz matrix. Copyright © 2009, Kent State University.
引用
收藏
页码:129 / 147
相关论文
共 50 条
  • [21] Tridiagonal Toeplitz matrices: properties and novel applications
    Noschese, Silvia
    Pasquini, Lionello
    Reichel, Lothar
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2013, 20 (02) : 302 - 326
  • [22] The envelope of tridiagonal Toeplitz matrices and block-shift matrices
    Aretaki, Aik.
    Psarrakos, P.
    Tsatsomeros, M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 532 : 60 - 85
  • [24] A fast decomposition of banded symmetric Toeplitz matrices for parallel processing
    Xiong, W
    Li, J
    Chen, RMM
    Qiao, S
    ISCAS '99: PROCEEDINGS OF THE 1999 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 3: ANALOG AND DIGITAL SIGNAL PROCESSING, 1999, : 259 - 262
  • [25] A Fast Algorithm for the Eigenvalue Bounds of a Class of Symmetric Tridiagonal Interval Matrices
    Yuan, Quan
    Yang, Zhixin
    APPLIEDMATH, 2023, 3 (01): : 90 - 97
  • [26] O(n) working precision inverses for symmetric tridiagonal Toeplitz matrices with floating point calculations
    Radons, Manuel
    OPTIMIZATION LETTERS, 2018, 12 (02) : 425 - 434
  • [27] On the worst-case convergence of MR and CG for symmetric positive definite tridiagonal Toeplitz matrices
    Liesen, J
    Tichy, P
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2005, 20 : 180 - 197
  • [28] Controlled approximation for the inverses of special tridiagonal Toeplitz and modified Toeplitz matrices
    C. Bruni
    S. Vergari
    CALCOLO, 2003, 40 : 149 - 161
  • [29] Controlled approximation for the inverses of special tridiagonal Toeplitz and modified Toeplitz matrices
    Bruni, C
    Vergari, S
    CALCOLO, 2003, 40 (03) : 149 - 161
  • [30] Are the Eigenvalues of Banded Symmetric Toeplitz Matrices Known in Almost Closed Form?
    Ekstroem, Sven-Erik
    Garoni, Carlo
    Serra-Capizzano, Stefano
    EXPERIMENTAL MATHEMATICS, 2018, 27 (04) : 478 - 487