SkinHealthMate app: An AI-powered digital platform for skin disease diagnosis

被引:1
|
作者
Aboulmira, Amina [1 ]
Hrimech, Hamid [1 ]
Lachgar, Mohamed [2 ,3 ,4 ]
Camara, Aboudramane [4 ,5 ]
Elbahja, Charafeddine [4 ,5 ]
Elmansouri, Amine [5 ]
Hassini, Yassine [5 ]
机构
[1] Hassan 1er Univ, LAMSAD Lab, ENSA, Berrechid, Morocco
[2] Univ Cadi Ayyad, Fac Sci & Technol, L2IS Lab, Marrakech, Morocco
[3] Univ Cadi Ayyad, Higher Normal Sch, Dept Comp Sci, Marrakech, Morocco
[4] Chouaib Doukkali Univ, LTI Lab, ENSA, El Jadida, Morocco
[5] Chouaib Doukkali Univ, IITE, ENSA, El Jadida, Morocco
来源
关键词
Artificial intelligence; Dermatology ensemble learning; Skin disease classification; Digital health platforms; CLASSIFICATION; DERMOSCOPY;
D O I
10.1016/j.sasc.2024.200166
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate diagnosis of skin diseases remains a significant challenge due to the inherent limitations of traditional visual and manual examination methods. These conventional approaches, while essential to dermatological practice, are prone to misdiagnoses and delays in treatment, particularly for conditions like skin cancer. To address these gaps, this paper presents the SkinHealth App, an innovative AI-driven solution that enhances the accuracy and efficiency of skin disease diagnosis. The app integrates a robust ensemble learning model, combining the strengths of EfficientNetB1 and EfficientNetB5 architectures. This ensemble model improves disease classification performance through advanced image processing techniques such as noise reduction and data augmentation. The key contributions of this work include the development of a scalable and secure serverside structure that ensures the safe handling of patient data and efficient processing of diagnostic queries. Experimental results on the HAM10000 dataset demonstrate the model's superior performance, achieving an accuracy of 93%, along with high precision and recall scores, thereby reducing false positives and false negatives. These outcomes clearly establish the app's potential to enhance dermatological diagnosis by providing timely and accurate disease identification. Ultimately, this work bridges the gap between traditional diagnostic methods and modern AI-driven technology, offering a transformative tool for improving patient care in dermatology.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Intuitiveness and Trustworthiness of AI-Powered Interfaces for Neurological Diagnosis - Preliminary Results
    Lombardi, Angela
    Marzo, Sofia
    Di Sciascio, Eugenio
    Di Noia, Tommaso
    Ardito, Carmelo
    HUMAN-CENTERED SOFTWARE ENGINEERING, HCSE 2024, 2024, 14793 : 273 - 280
  • [22] AI-powered visual diagnosis of vulvar lichen sclerosus: A pilot study
    Gottfrois, Philippe
    Zhu, Jie
    Steiger, Alexandra
    Amruthalingam, Ludovic
    Kind, Andre B.
    Heinzelmann, Viola
    Mang, Claudia
    Navarini, Alexander A.
    Mueller, Simon M.
    JOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY AND VENEREOLOGY, 2024, 38 (12) : 2280 - 2285
  • [23] Enhancing Multiple Sclerosis Differential Diagnosis with AI-Powered Brain Volumetry
    Anania, Pilar
    Esquivel, Myrian
    Chaves, Hernan
    Fernandez Slezak, Diego
    Correale, Jorge
    Farez, Mauricio
    MULTIPLE SCLEROSIS JOURNAL, 2024, 30 (03) : 999 - 999
  • [24] GranoScan: an AI-powered mobile app for in-field identification of biotic threats of wheat
    Dainelli, Riccardo
    Bruno, Antonio
    Martinelli, Massimo
    Moroni, Davide
    Rocchi, Leandro
    Morelli, Silvia
    Ferrari, Emilio
    Silvestri, Marco
    Agostinelli, Simone
    La Cava, Paolo
    Toscano, Piero
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [25] An AI-powered patient triage platform for future viral outbreaks using COVID-19 as a disease model
    Charkoftaki, Georgia
    Aalizadeh, Reza
    Santos-Neto, Alvaro
    Tan, Wan Ying
    Davidson, Emily A.
    Nikolopoulou, Varvara
    Wang, Yewei
    Thompson, Brian
    Furnary, Tristan
    Chen, Ying
    Wunder, Elsio A.
    Coppi, Andreas
    Schulz, Wade
    Iwasaki, Akiko
    Pierce, Richard W.
    Cruz, Charles S. Dela
    Desir, Gary V.
    Kaminski, Naftali
    Farhadian, Shelli
    Veselkov, Kirill
    Datta, Rupak
    Campbell, Melissa
    Thomaidis, Nikolaos S.
    Ko, Albert I.
    Thompson, David C.
    Vasiliou, Vasilis
    Yale IMPACT Study Team
    HUMAN GENOMICS, 2023, 17 (01)
  • [26] An AI-powered patient triage platform for future viral outbreaks using COVID-19 as a disease model
    Georgia Charkoftaki
    Reza Aalizadeh
    Alvaro Santos-Neto
    Wan Ying Tan
    Emily A. Davidson
    Varvara Nikolopoulou
    Yewei Wang
    Brian Thompson
    Tristan Furnary
    Ying Chen
    Elsio A. Wunder
    Andreas Coppi
    Wade Schulz
    Akiko Iwasaki
    Richard W. Pierce
    Charles S. Dela Cruz
    Gary V. Desir
    Naftali Kaminski
    Shelli Farhadian
    Kirill Veselkov
    Rupak Datta
    Melissa Campbell
    Nikolaos S. Thomaidis
    Albert I. Ko
    David C. Thompson
    Vasilis Vasiliou
    Human Genomics, 17
  • [27] GenTwin: Generative AI-Powered Digital Twinning for Adaptive Management in IoT Networks
    Duran, Kubra
    Shin, Hyundong
    Duong, Trung Q.
    Canberk, Berk
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2025, 11 (02) : 1053 - 1063
  • [28] Beyond digital literacy: The era of AI-powered assistants and evolving user skills
    Naamati-Schneider, Lior
    Alt, Dorit
    EDUCATION AND INFORMATION TECHNOLOGIES, 2024, 29 (16) : 21263 - 21293
  • [29] Digitalization of railway transportation through AI-powered services: digital twin trains
    Sarp, Salih
    Kuzlu, Murat
    Jovanovic, Vukica
    Polat, Zekeriya
    Guler, Ozgur
    EUROPEAN TRANSPORT RESEARCH REVIEW, 2024, 16 (01)
  • [30] Industrializing AI-powered drug discovery: lessons learned from the Patrimony computing platform
    Guedj, Mickael
    Swindle, Jack
    Hamon, Antoine
    Hubert, Sandra
    Desvaux, Emiko
    Laplume, Jessica
    Xuereb, Laura
    Lefebvre, Celine
    Haudry, Yannick
    Gabarroca, Christine
    Aussy, Audrey
    Laigle, Laurence
    Dupin-Roger, Isabelle
    Moingeon, Philippe
    EXPERT OPINION ON DRUG DISCOVERY, 2022, 17 (08) : 815 - 824