A time-evolving data structure scalable between discrete and continuous attribute modifications

被引:0
|
作者
Danielsson, Martin [1 ]
Müller, Rainer [1 ]
机构
[1] Imc AG, Office Freiburg, Germany
关键词
D O I
10.1007/3-540-36477-3_8
中图分类号
学科分类号
摘要
15
引用
收藏
页码:98 / 114
相关论文
共 50 条
  • [21] Classification of Multidimensional Time-Evolving Data Using Histograms of Grassmannian Points
    Dimitropoulos, Kosmas
    Barmpoutis, Panagiotis
    Kitsikidis, Alexandros
    Grammalidis, Nikos
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (04) : 892 - 905
  • [22] GBTM: Community detection and network reconstruction for noisy and time-evolving data
    Chen, Xiao
    Hu, Jie
    Chen, Yu
    INFORMATION SCIENCES, 2024, 679
  • [23] Modeling and Predicting Community Structure Changes in Time-Evolving Social Networks
    Tajeuna, Etienne Gael
    Bouguessa, Mohamed
    Wang, Shengrui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (06) : 1166 - 1180
  • [24] Mobile Data Traffic Prediction by Exploiting Time-Evolving User Mobility Patterns
    Sun, Feiyang
    Wang, Pinghui
    Zhao, Junzhou
    Xu, Nuo
    Zeng, Juxiang
    Tao, Jing
    Song, Kaikai
    Deng, Chao
    Lui, John C. S.
    Guan, Xiaohong
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (12) : 4456 - 4470
  • [25] CONTINUOUS TIME REGRESSIONS WITH DISCRETE DATA
    ROBINSON, PM
    ANNALS OF STATISTICS, 1975, 3 (03): : 688 - 697
  • [26] A Data Transmission Scheme Based on Time-Evolving Meeting Probability for Opportunistic Social Network
    Xiao, Fu
    Sun, Guoxia
    Xu, Jia
    Jiang, Lingyun
    Wang, Ruchuan
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2013,
  • [27] Discovering Urban Spatio-temporal Structure from Time-Evolving Traffic Networks
    Wang, Jingyuan
    Gao, Fei
    Cui, Peng
    Li, Chao
    Xiong, Zhang
    WEB TECHNOLOGIES AND APPLICATIONS, APWEB 2014, 2014, 8709 : 93 - 104
  • [28] Scalable Structure Learning of Continuous-Time Bayesian Networks from Incomplete Data
    Linzner, Dominik
    Schmidt, Michael
    Koeppl, Heinz
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [29] AMAD: Adversarial Multiscale Anomaly Detection on High-Dimensional and Time-Evolving Categorical Data
    Gao, Zheng
    Guo, Lin
    Ma, Chi
    Ma, Xiao
    Sun, Kai
    Xiang, Hang
    Zhu, Xiaoqiang
    Li, Hongsong
    Liu, Xiaozhong
    1ST INTERNATIONAL WORKSHOP ON DEEP LEARNING PRACTICE FOR HIGH-DIMENSIONAL SPARSE DATA WITH KDD (DLP-KDD 2019), 2019,
  • [30] BAYESIAN LINEAR UNMIXING OF TIME-EVOLVING GENE EXPRESSION DATA USING A HIDDEN MARKOV MODEL
    Bazot, Cecile
    Dobigeon, Nicolas
    Tourneret, Jean-Yves
    Hero, Alfred O., III
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 944 - 948