One-dimensional wave equation model for estimating replacement depth of dynamic replacement

被引:0
|
作者
Luo, Sihai
Pan, Xiaoqing
Huang, Songhua
Gong, Xiaonan
机构
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] A simple derivation of the one-dimensional classical wave equation
    Lieou, Charles K. C.
    EUROPEAN JOURNAL OF PHYSICS, 2007, 28 (04) : N17 - N19
  • [22] Optimal location of controllers for the one-dimensional wave equation
    Privat, Yannick
    Trelat, Emmanuel
    Zuazua, Enrique
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (06): : 1097 - 1126
  • [23] Optimal control of the one-dimensional periodic wave equation
    V. Barbu
    Applied Mathematics and Optimization, 1997, 35 (1): : 77 - 90
  • [24] Optimal design under the one-dimensional wave equation
    Maestre, Faustino
    Munch, Arnaud
    Pedregal, Pablo
    INTERFACES AND FREE BOUNDARIES, 2008, 10 (01) : 87 - 117
  • [25] The one-dimensional wave equation with general boundary conditions
    Alvarez-Pardo, Edgardo
    Warma, Mahamadi
    ARCHIV DER MATHEMATIK, 2011, 96 (02) : 177 - 186
  • [26] Chaotic dynamical behaviors of a one-dimensional wave equation
    Zhang, Lijuan
    Shi, Yuming
    Zhang, Xu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (02) : 623 - 634
  • [27] AN APPROXIMATE SOLUTION TO THE ONE-DIMENSIONAL WAVE-EQUATION
    ROSLAND, BO
    GEOPHYSICS, 1987, 52 (03) : 403 - 403
  • [28] The one-dimensional wave equation with general boundary conditions
    Edgardo Alvarez-Pardo
    Mahamadi Warma
    Archiv der Mathematik, 2011, 96 : 177 - 186
  • [29] ASYMPTOTIC DECAY FOR A ONE-DIMENSIONAL NONLINEAR WAVE EQUATION
    Lindblad, Hans
    Tao, Terence
    ANALYSIS & PDE, 2012, 5 (02): : 411 - 422
  • [30] ONE-DIMENSIONAL INVERSE PROBLEM FOR A WAVE-EQUATION
    ROMANOV, VG
    DOKLADY AKADEMII NAUK SSSR, 1973, 211 (05): : 1083 - 1084