The one-dimensional wave equation with general boundary conditions

被引:0
|
作者
Edgardo Alvarez-Pardo
Mahamadi Warma
机构
[1] University of Puerto Rico,Department of Mathematics, Faculty of Natural Sciences
来源
Archiv der Mathematik | 2011年 / 96卷
关键词
35L05; 35L90; 47D06; 47D09; Wave equation; Cosine and sine families; Nonlocal Robin boundary conditions;
D O I
暂无
中图分类号
学科分类号
摘要
We show that a realization of the Laplace operator Au := u′′ with general nonlocal Robin boundary conditions αju′(j) + βju(j) + γ1–ju(1 − j) = 0, (j = 0, 1) generates a cosine family on Lp(0, 1) for every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p\,{\in}\,[1,\infty)}$$\end{document}. Here αj, βj and γj are complex numbers satisfying α0, α1 ≠ 0. We also obtain an explicit representation of local solutions to the associated wave equation by using the classical d’Alembert’s formula.
引用
下载
收藏
页码:177 / 186
页数:9
相关论文
共 50 条