35L05;
35L90;
47D06;
47D09;
Wave equation;
Cosine and sine families;
Nonlocal Robin boundary conditions;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We show that a realization of the Laplace operator Au := u′′ with general nonlocal Robin boundary conditions αju′(j) + βju(j) + γ1–ju(1 − j) = 0, (j = 0, 1) generates a cosine family on Lp(0, 1) for every \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${p\,{\in}\,[1,\infty)}$$\end{document}. Here αj, βj and γj are complex numbers satisfying α0, α1 ≠ 0. We also obtain an explicit representation of local solutions to the associated wave equation by using the classical d’Alembert’s formula.
机构:
Univ Castilla La Mancha, ETSI Ind, Dept Matemat, E-13071 Ciudad Real, SpainUniv Castilla La Mancha, ETSI Ind, Dept Matemat, E-13071 Ciudad Real, Spain
Pedregal, Pablo
Periago, Francisco
论文数: 0引用数: 0
h-index: 0
机构:Univ Castilla La Mancha, ETSI Ind, Dept Matemat, E-13071 Ciudad Real, Spain
机构:
Shanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
Acad Sinica, Acad Math & Syst Sci, Beijing 100190, Peoples R China
Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Johannesburg, South AfricaShanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China
Guo, Bao-Zhu
Jin, Feng-Fei
论文数: 0引用数: 0
h-index: 0
机构:
Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Johannesburg, South Africa
Qingdao Univ, Sch Math Sci, Qingdao, Peoples R ChinaShanxi Univ, Sch Math Sci, Taiyuan 030006, Peoples R China