On an extremal property of classical orthogonal polynomials

被引:0
|
作者
Stepanov, V.D. [1 ]
机构
[1] Vychislitel'nyj Tsentr DVO RAN, Khabarovsk, Russia
关键词
Algorithms; -; Analysis; Functions; Probability;
D O I
暂无
中图分类号
学科分类号
摘要
Generalization of one double inequality of probability theory, that is [EG'(X)]2&leD[G(X)]&leE[G'(X)]2, is given using the approach different from usual. In particular, sharp generalization for Chernoff inequality (representing the right part of the analyzed one) is given.
引用
收藏
页码:452 / 454
相关论文
共 50 条
  • [31] An Extremal Problem for the Bergman Kernel of Orthogonal Polynomials
    Charpentier, S.
    Levenberg, N.
    Wielonsky, F.
    [J]. CONSTRUCTIVE APPROXIMATION, 2024,
  • [32] Caustics of Poncelet Polygons and Classical Extremal Polynomials
    Dragovic, Vladimir
    Radnovic, Milena
    [J]. REGULAR & CHAOTIC DYNAMICS, 2019, 24 (01): : 1 - 35
  • [33] Caustics of Poncelet Polygons and Classical Extremal Polynomials
    Vladimir Dragović
    Milena Radnović
    [J]. Regular and Chaotic Dynamics, 2019, 24 : 1 - 35
  • [34] Q-hermite polynomials and classical orthogonal polynomials
    Berg, C
    Ismail, MEH
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (01): : 43 - 63
  • [35] THE COMPLEMENTARY POLYNOMIALS AND THE RODRIGUES OPERATOR OF CLASSICAL ORTHOGONAL POLYNOMIALS
    Costas-Santos, Roberto S.
    Marcellan Espanol, Francisco
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (10) : 3485 - 3493
  • [36] d-Orthogonal Analogs of Classical Orthogonal Polynomials
    Horozov, Emil
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2018, 14
  • [37] ON SERIES OF ORTHOGONAL POLYNOMIALS AND SYSTEMS OF CLASSICAL TYPE POLYNOMIALS
    Zagorodnyuk, S. M.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2021, 73 (06) : 930 - 943
  • [38] On Series of Orthogonal Polynomials and Systems of Classical Type Polynomials
    S. M. Zagorodnyuk
    [J]. Ukrainian Mathematical Journal, 2021, 73 : 930 - 943
  • [39] MULTIPLICATION OF GENERALIZED POLYNOMIALS, WITH APPLICATIONS TO CLASSICAL ORTHOGONAL POLYNOMIALS
    BARNETT, S
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1984, 5 (04): : 457 - 462
  • [40] Classical orthogonal polynomials: dependence of parameters
    Ronveaux, A
    Zarzo, A
    Area, I
    Godoy, E
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 121 (1-2) : 95 - 112