共 50 条
Classical orthogonal polynomials: dependence of parameters
被引:12
|作者:
Ronveaux, A
Zarzo, A
Area, I
Godoy, E
[1
]
机构:
[1] Univ Vigo, Escuela Tecn Super Ingenieros Ind & Minas, Dept Matemat Aplicada, Vigo 36200, Spain
[2] Fac Univ Notre Dame Paix, B-5000 Namur, Belgium
[3] Univ Granada, Fac Ciencias, Inst Carlos I Fis Teor & Computac, E-18071 Granada, Spain
关键词:
classical orthogonal polynomials;
difference and q-derivative operators;
digamma function;
D O I:
10.1016/S0377-0427(00)00350-2
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Most of the classical orthogonal polynomials (continuous, discrete and their q-analogues) can be considered as functions of several parameters c(i). A systematic study of the variation, infinitesimal and finite, of these polynomials P-n(x,c(i)) with respect to the parameters c(i) is proposed. A method to get recurrence relations for connection coefficients linking (partial derivative(r)/partial derivative c(i)(r))P-n(x,c(i)) to P-n(x,c(i)) is given and, in some situations, explicit expressions are obtained. This allows us to compute new integrals or sums of classical orthogonal polynomials using the digamma function. A basic theorem on the zeros of (partial derivative/partial derivative c(i)))P-n,(x,c(i)) is also proved. (C) 2000 Elsevier Science B.V. All rights reserved. MSC: 33C25; 42C05; 33B15.
引用
收藏
页码:95 / 112
页数:18
相关论文