Identifying non-Hermitian critical points with the quantum metric

被引:0
|
作者
Ren, Jun-Feng [1 ,2 ]
Li, Jing [1 ,2 ]
Ding, Hai-Tao [3 ,4 ,5 ,6 ]
Zhang, Dan-Wei [1 ,2 ]
机构
[1] South China Normal Univ, Guangdong Basic Res Ctr Excellence Struct & Fundam, Key Lab Atom & Subatom Struct & Quantum Control, Minist Educ, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Sch Phys, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Sch Phys, Nanjing 210093, Peoples R China
[5] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[6] Natl Univ Singapore, Dept Phys, Singapore 117551, Singapore
关键词
GEOMETRIC TENSOR; FIDELITY;
D O I
10.1103/PhysRevA.110.052203
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The geometric properties of quantum states are fully encoded by the quantum geometric tensor. The real and imaginary parts of the quantum geometric tensor are the quantum metric and Berry curvature, which characterize the distance and phase difference between two nearby quantum states in Hilbert space, respectively. For conventional Hermitian quantum systems, the quantum metric corresponds to the fidelity susceptibility and has already been used to specify quantum phase transitions from the geometric perspective. In this paper, we extend this wisdom to the non-Hermitian systems for revealing non-Hermitian critical points. To be concrete, by employing numerical exact diagonalization and analytical methods, we calculate the quantum metric and corresponding order parameters in various non-Hermitian models, which include two non-Hermitian generalized Aubry-Andr & eacute; models and non-Hermitian cluster and mixed-field Ising models. We demonstrate that the quantum metric of eigenstates in these non-Hermitian models exactly identifies the localization transitions, mobility edges, and many-body quantum phase transitions with gap closings, respectively. We further show that this strategy is robust against the finite-size effect and different boundary conditions.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Quantum entanglement of non-Hermitian quasicrystals
    Chen, Li-Mei
    Zhou, Yao
    Chen, Shuai A.
    Ye, Peng
    PHYSICAL REVIEW B, 2022, 105 (12)
  • [42] Entanglement in non-Hermitian quantum theory
    Pati, Arun K.
    PRAMANA-JOURNAL OF PHYSICS, 2009, 73 (03): : 485 - 498
  • [43] Non-Hermitian quantum Fermi accelerator
    Fring, Andreas
    Taira, Takanobu
    PHYSICAL REVIEW A, 2023, 108 (01)
  • [44] NON-HERMITIAN ADIABATIC QUANTUM OPTIMIZATION
    Berman, Gennady P.
    Nesterov, Alexander I.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2009, 7 (08) : 1469 - 1478
  • [45] Non-Hermitian noncommutative quantum mechanics
    J. F. G. dos Santos
    F. S. Luiz
    O. S. Duarte
    M. H. Y. Moussa
    The European Physical Journal Plus, 134
  • [46] Non-Hermitian quantum quenches in holography
    Morales-Tejera, Sergio
    Landsteiner, Karl
    SCIPOST PHYSICS, 2023, 14 (03):
  • [47] Editorial: Non-Hermitian quantum mechanics
    Hatano, Naomichi
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2020, 2020 (12):
  • [48] Non-Hermitian Quantum Annealing and Superradiance
    Nesterov, Alexander I.
    Berman, Gennady P.
    Aceves de la Cruz, Fermin
    Beas Zepeda, Juan Carlos
    NON-HERMITIAN HAMILTONIANS IN QUANTUM PHYSICS, 2016, 184 : 329 - 344
  • [49] Non-Hermitian approach for quantum plasmonics
    Cortes, Cristian L.
    Otten, Matthew
    Gray, Stephen K.
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (08):
  • [50] Non-Hermitian quantum field theory
    Bender, CM
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (19): : 4646 - 4652