Identifying non-Hermitian critical points with the quantum metric

被引:0
|
作者
Ren, Jun-Feng [1 ,2 ]
Li, Jing [1 ,2 ]
Ding, Hai-Tao [3 ,4 ,5 ,6 ]
Zhang, Dan-Wei [1 ,2 ]
机构
[1] South China Normal Univ, Guangdong Basic Res Ctr Excellence Struct & Fundam, Key Lab Atom & Subatom Struct & Quantum Control, Minist Educ, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Sch Phys, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Sch Phys, Nanjing 210093, Peoples R China
[5] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[6] Natl Univ Singapore, Dept Phys, Singapore 117551, Singapore
关键词
GEOMETRIC TENSOR; FIDELITY;
D O I
10.1103/PhysRevA.110.052203
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The geometric properties of quantum states are fully encoded by the quantum geometric tensor. The real and imaginary parts of the quantum geometric tensor are the quantum metric and Berry curvature, which characterize the distance and phase difference between two nearby quantum states in Hilbert space, respectively. For conventional Hermitian quantum systems, the quantum metric corresponds to the fidelity susceptibility and has already been used to specify quantum phase transitions from the geometric perspective. In this paper, we extend this wisdom to the non-Hermitian systems for revealing non-Hermitian critical points. To be concrete, by employing numerical exact diagonalization and analytical methods, we calculate the quantum metric and corresponding order parameters in various non-Hermitian models, which include two non-Hermitian generalized Aubry-Andr & eacute; models and non-Hermitian cluster and mixed-field Ising models. We demonstrate that the quantum metric of eigenstates in these non-Hermitian models exactly identifies the localization transitions, mobility edges, and many-body quantum phase transitions with gap closings, respectively. We further show that this strategy is robust against the finite-size effect and different boundary conditions.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Hermitian and non-Hermitian description of quantum wave propagation
    Villavicencio, J.
    Romo, R.
    Munoz-Rodriguez, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (10)
  • [32] Complexity geometry in Hermitian and non-Hermitian quantum dynamics
    Lv, Chenwei
    Zhou, Qi
    PHYSICAL REVIEW D, 2024, 110 (08)
  • [33] Critical parameters for non-hermitian Hamiltonians
    Fernandez, Francisco M.
    Garcia, Javier
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 : 141 - 151
  • [34] Exceptional points and non-Hermitian photonics at the nanoscale
    Li, Aodong
    Wei, Heng
    Cotrufo, Michele
    Chen, Weijin
    Mann, Sander
    Ni, Xiang
    Xu, Bingcong
    Chen, Jianfeng
    Wang, Jian
    Fan, Shanhui
    Qiu, Cheng-Wei
    Alu, Andrea
    Chen, Lin
    NATURE NANOTECHNOLOGY, 2023, 18 (07) : 706 - 720
  • [35] Non-Hermitian Sensing in the Absence of Exceptional Points
    Xiao, Lei
    Chu, Yaoming
    Lin, Quan
    Lin, Haiqing
    Yi, Wei
    Cai, Jianming
    Xue, Peng
    PHYSICAL REVIEW LETTERS, 2024, 133 (18)
  • [36] Exceptional points and non-Hermitian photonics at the nanoscale
    Aodong Li
    Heng Wei
    Michele Cotrufo
    Weijin Chen
    Sander Mann
    Xiang Ni
    Bingcong Xu
    Jianfeng Chen
    Jian Wang
    Shanhui Fan
    Cheng-Wei Qiu
    Andrea Alù
    Lin Chen
    Nature Nanotechnology, 2023, 18 : 706 - 720
  • [37] Quantum battery with non-Hermitian charging
    Konar, Tanoy Kanti
    Lakkaraju, Leela Ganesh Chandra
    Sen , Aditi
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [38] Pseudospectra in non-Hermitian quantum mechanics
    Krejcirik, D.
    Siegl, P.
    Tater, M.
    Viola, J.
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (10)
  • [39] Relativistic non-Hermitian quantum mechanics
    Jones-Smith, Katherine
    Mathur, Harsh
    PHYSICAL REVIEW D, 2014, 89 (12):
  • [40] A quantum system with a non-Hermitian Hamiltonian
    Bebiano, N.
    da Providencia, J.
    Nishiyama, S.
    da Providencia, J. P.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (08)