Identifying non-Hermitian critical points with the quantum metric

被引:0
|
作者
Ren, Jun-Feng [1 ,2 ]
Li, Jing [1 ,2 ]
Ding, Hai-Tao [3 ,4 ,5 ,6 ]
Zhang, Dan-Wei [1 ,2 ]
机构
[1] South China Normal Univ, Guangdong Basic Res Ctr Excellence Struct & Fundam, Key Lab Atom & Subatom Struct & Quantum Control, Minist Educ, Guangzhou 510006, Peoples R China
[2] South China Normal Univ, Sch Phys, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Guangzhou 510006, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Sch Phys, Nanjing 210093, Peoples R China
[5] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
[6] Natl Univ Singapore, Dept Phys, Singapore 117551, Singapore
关键词
GEOMETRIC TENSOR; FIDELITY;
D O I
10.1103/PhysRevA.110.052203
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The geometric properties of quantum states are fully encoded by the quantum geometric tensor. The real and imaginary parts of the quantum geometric tensor are the quantum metric and Berry curvature, which characterize the distance and phase difference between two nearby quantum states in Hilbert space, respectively. For conventional Hermitian quantum systems, the quantum metric corresponds to the fidelity susceptibility and has already been used to specify quantum phase transitions from the geometric perspective. In this paper, we extend this wisdom to the non-Hermitian systems for revealing non-Hermitian critical points. To be concrete, by employing numerical exact diagonalization and analytical methods, we calculate the quantum metric and corresponding order parameters in various non-Hermitian models, which include two non-Hermitian generalized Aubry-Andr & eacute; models and non-Hermitian cluster and mixed-field Ising models. We demonstrate that the quantum metric of eigenstates in these non-Hermitian models exactly identifies the localization transitions, mobility edges, and many-body quantum phase transitions with gap closings, respectively. We further show that this strategy is robust against the finite-size effect and different boundary conditions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Quantum metric and wave packets at exceptional points in non-Hermitian systems
    Solnyshkov, D. D.
    Leblanc, C.
    Bessonart, L.
    Nalitov, A.
    Ren, Jiahuan
    Liao, Qing
    Li, Feng
    Malpuech, G.
    PHYSICAL REVIEW B, 2021, 103 (12)
  • [2] Unconventional scaling at non-Hermitian critical points
    Arouca, R.
    Lee, C. H.
    Smith, C. Morais
    PHYSICAL REVIEW B, 2020, 102 (24)
  • [3] Crossing exceptional points in non-Hermitian quantum systems
    Klauck, Friederike U. J.
    Heinrich, Matthias
    Szameit, Alexander
    Wolterink, Tom A. W.
    SCIENCE ADVANCES, 2025, 11 (02):
  • [4] ON THE METRIC OF A NON-HERMITIAN MODEL
    Ergun, Ebru
    Saglam, Mesude
    REPORTS ON MATHEMATICAL PHYSICS, 2010, 65 (03) : 367 - 378
  • [5] Quantum Metric Unveils Defect Freezing in Non-Hermitian Systems
    Sim, Karin
    Defenu, Nicolò
    Molignini, Paolo
    Chitra, R.
    Physical Review Letters, 2023, 131 (15):
  • [6] Critical non-Hermitian topology induced quantum sensing
    Sarkar, S.
    Ciccarello, F.
    Carollo, A.
    Bayat, A.
    NEW JOURNAL OF PHYSICS, 2024, 26 (07):
  • [7] Non-Hermitian quantum mechanics and exceptional points in molecular electronics
    Ernzerhof, Matthias
    Giguere, Alexandre
    Mayou, Didier
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (24):
  • [8] Choice of a metric for the non-Hermitian oscillator
    Musumbu, D. P.
    Geyer, H. B.
    Heiss, W. D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (02) : F75 - F80
  • [9] Observation of quantum metric and non-Hermitian Berry curvature in a plasmonic lattice
    Cuerda, Javier
    Taskinen, Jani M.
    Kaellman, Nicki
    Grabitz, Leo
    Toermae, Paeivi
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [10] Quantum exceptional points of non-Hermitian Hamiltonians and Liouvillians: The effects of quantum jumps
    Minganti, Fabrizio
    Miranowicz, Adam
    Chhajlany, Ravindra W.
    Nori, Franco
    PHYSICAL REVIEW A, 2019, 100 (06)