The error bounds estimation of interpolating windowed FFT for harmonic analysis algorithm

被引:0
|
作者
Zhang, Li-Yong
Wang, Xue-Wei
Zhou, Hai-Bo
Liang, Yuan-Hua
机构
[1] Harbin Univ. of Sci. and Technol., Harbin 150040, China
[2] Beijing Univ. of Chem. Technol., Beijing 100029, China
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
FFT has relatively large errors in the condition of asynchronizing sampling, and therefore is not satisfied when high harmonic parameter accuracy is requested. To some extent, interpolating windowed FFT algorithm for harmonic analysis can be used to improve the accuracy. The error bounds of the algorithm by computer simulation is analyzed, which shows that in the harmonic analysis application, the errors of interpolating windowed FFT algorithm are relatively large in some condition and the error bounds should be used to evaluate the accuracy of the algorithm.
引用
收藏
页码:353 / 356
相关论文
共 50 条
  • [41] Broadband Bioimpedance Spectroscopy Based on a Multifrequency Mixed Excitation and Nuttall Windowed FFT Algorithm
    Yang, Yuxiang
    Zhang, Wen
    Du, Fangling
    Tang, Xuan
    Wen, He
    Teng, Zhaosheng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [42] LEHMANN BOUNDS AND EIGENVALUE ERROR ESTIMATION
    Ovtchinnikov, E. E.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) : 2078 - 2102
  • [43] ESTIMATION OF AUDIT BOUNDS FOR NET ERROR
    MEYER, D
    FATTI, P
    STATISTICIAN, 1992, 41 (01): : 9 - 16
  • [44] Error-bounds on curvature estimation
    Utcke, S
    SCALE SPACE METHODS IN COMPUTER VISION, PROCEEDINGS, 2003, 2695 : 657 - 666
  • [45] Lower bounds for Bayes error estimation
    Antos, A
    Devroye, L
    Györfi, L
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1999, 21 (07) : 643 - 645
  • [46] Error bounds on the estimation of fractal dimension
    Dubuc, B
    Dubuc, S
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (02) : 602 - 626
  • [47] Error Bounds for Dynamical Spectral Estimation
    Webber, Robert J.
    Thiede, Erik H.
    Dow, Douglas
    Dinner, Aaron R.
    Weare, Jonathan
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2021, 3 (01): : 225 - 252
  • [48] BOUNDS ON ERROR IN SIGNAL PARAMETER ESTIMATION
    BELLINI, S
    TARTARA, G
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1974, 22 (03) : 340 - 342
  • [49] Estimation error bounds for frame denoising
    Fletcher, AK
    Ramchandran, K
    WAVELETS: APPLICATIONS IN SIGNAL AND IMAGE PROCESSING X, PTS 1 AND 2, 2003, 5207 : 40 - 46
  • [50] Error bounds for convex parameter estimation
    Picard, J. S.
    Weiss, A. J.
    SIGNAL PROCESSING, 2012, 92 (05) : 1328 - 1337