CRISPR-Cas systems and applications for crop bioengineering

被引:0
|
作者
Uranga, Mireia [1 ,2 ,3 ]
Martin-Hernandez, Ana Montserrat [3 ,4 ]
De Storme, Nico [1 ,2 ]
Pasin, Fabio [5 ,6 ]
机构
[1] Katholieke Univ Leuven, Dept Biosyst, Div Crop Biotech, Lab Plant Genet & Crop Improvement, Leuven, Belgium
[2] Katholieke Univ Leuven, Plant Inst LPI, Leuven, Belgium
[3] Ctr Res Agr Genom CRAG, Barcelona, Spain
[4] Inst Recerca & Tecnol Agroalimentaries IRTA, Barcelona, Spain
[5] Univ Politecn Valencia, Consejo Super Invest Cient, Inst Biol Mol & Celular Plantas IBMCP, Valencia, Spain
[6] CSIC, Ctr Invest Biol Margarita Salas CIB, Madrid, Spain
关键词
transgene-free genome editing; genome engineering; crop trait improvement; precise breeding; CRISPR (clustered regularly interspaced short palindromic repeat); Cas9 (CRISPR associated protein 9)-mediated genome editing; QUANTITATIVE TRAIT VARIATION; TOMATO; DOMESTICATION; MUTAGENESIS; IMPROVEMENT;
D O I
10.3389/fbioe.2024.1483857
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
CRISPR-Cas technologies contribute to enhancing our understanding of plant gene functions, and to the precise breeding of crop traits. Here, we review the latest progress in plant genome editing, focusing on emerging CRISPR-Cas systems, DNA-free delivery methods, and advanced editing approaches. By illustrating CRISPR-Cas applications for improving crop performance and food quality, we highlight the potential of genome-edited crops to contribute to sustainable agriculture and food security.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] The structural biology of CRISPR-Cas systems
    Jiang, Fuguo
    Doudna, Jennifer A.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2015, 30 : 100 - 111
  • [22] New CRISPR-Cas systems discovered
    Hui Yang
    Dinshaw J Patel
    Cell Research, 2017, 27 : 313 - 314
  • [23] Origins and evolution of CRISPR-Cas systems
    Koonin, Eugene, V
    Makarova, Kira S.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2019, 374 (1772)
  • [24] CRISPR-Cas systems in multicellular cyanobacteria
    Hou, Shengwei
    Brenes-Alvarez, Manuel
    Reimann, Viktoria
    Alkhnbashi, Omer S.
    Backofen, Rolf
    Muro-Pastor, Alicia M.
    Hess, Wolfgang R.
    RNA BIOLOGY, 2019, 16 (04) : 518 - 529
  • [25] Evolution and classification of the CRISPR-Cas systems
    Makarova, Kira S.
    Haft, Daniel H.
    Barrangou, Rodolphe
    Brouns, Stan J. J.
    Charpentier, Emmanuelle
    Horvath, Philippe
    Moineau, Sylvain
    Mojica, Francisco J. M.
    Wolf, Yuri I.
    Yakunin, Alexander F.
    van der Oost, John
    Koonin, Eugene V.
    NATURE REVIEWS MICROBIOLOGY, 2011, 9 (06) : 467 - 477
  • [26] Using CRISPR-Cas systems as antimicrobials
    Bikard, David
    Barrangou, Rodolphe
    CURRENT OPINION IN MICROBIOLOGY, 2017, 37 : 155 - 160
  • [27] An introduction and use of the CRISPR-Cas systems
    Singh, Vijai
    REPROGRAMMING THE GENOME: APPLICATIONS OF CRISPR-CAS IN NON-MAMMALIAN SYSTEMS, PT A, 2021, 179 : 1 - 10
  • [28] CRISPR-Cas systems of lactic acid bacteria and applications in food science
    Cui, Yanhua
    Qu, Xiaojun
    BIOTECHNOLOGY ADVANCES, 2024, 71
  • [29] CRISPR-Cas systems mediated biosensing and applications in food safety detection
    Liu, Jianghua
    Wu, Di
    Chen, Jiahui
    Jia, Shijie
    Chen, Jian
    Wu, Yongning
    Li, Guoliang
    CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2024, 64 (10) : 2960 - 2985
  • [30] The next generation of CRISPR-Cas technologies and applications
    Pickar-Oliver, Adrian
    Gersbach, Charles A.
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2019, 20 (08) : 490 - 507