User-guided program reasoning using Bayesian inference

被引:0
|
作者
Raghothaman M. [1 ]
Kulkarni S. [1 ]
Heo K. [1 ]
Naik M. [1 ]
机构
[1] University of Pennsylvania, United States
来源
ACM SIGPLAN Notices | 2018年 / 53卷 / 04期
基金
美国国家科学基金会;
关键词
alarm ranking; Bayesian inference; belief networks; Static analysis;
D O I
10.1145/3192366.3192417
中图分类号
学科分类号
摘要
Program analyses necessarily make approximations that often lead them to report true alarms interspersed with many false alarms. We propose a new approach to leverage user feedback to guide program analyses towards true alarms and away from false alarms. Our approach associates each alarm with a confidence value by performing Bayesian inference on a probabilistic model derived from the analysis rules. In each iteration, the user inspects the alarm with the highest confidence and labels its ground truth, and the approach recomputes the confidences of the remaining alarms given this feedback. It thereby maximizes the return on the effort by the user in inspecting each alarm. We have implemented our approach in a tool named Bingo for program analyses expressed in Datalog. Experiments with real users and two sophisticated analyses - -a static datarace analysis for Java programs and a static taint analysis for Android apps - -show significant improvements on a range of metrics, including false alarm rates and number of bugs found. © 2018 ACM.
引用
收藏
页码:722 / 735
页数:13
相关论文
共 50 条
  • [21] User-guided Dimensionality Reduction Ensembles
    Hilasaca, Gladys M.
    Paulovich, Fernando V.
    2019 23RD INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV): BIOMEDICAL VISUALIZATION AND GEOMETRIC MODELLING & IMAGING, 2019, : 228 - 233
  • [22] A user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS)
    Anna Jenul
    Stefan Schrunner
    Jürgen Pilz
    Oliver Tomic
    Machine Learning, 2022, 111 : 3897 - 3923
  • [23] A user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS)
    Jenul, Anna
    Schrunner, Stefan
    Pilz, Jurgen
    Tomic, Oliver
    MACHINE LEARNING, 2022, 111 (10) : 3897 - 3923
  • [24] User-Guided Deep Human Image Matting Using Arbitrary Trimaps
    Fang, Xiaonan
    Zhang, Song-Hai
    Chen, Tao
    Wu, Xian
    Shamir, Ariel
    Hu, Shi-Min
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 2040 - 2052
  • [25] Tulipse: A Visualization Framework for User-Guided Parallelization
    Wong, Yi Wen
    Dubrownik, Tomasz
    Tang, Wai Teng
    Tan, Wen Jun
    Duan, Rubing
    Goh, Rick Siow Mong
    Kuo, Shyh-Hao
    Turner, Stephen John
    Wong, Weng-Fai
    EURO-PAR 2012 PARALLEL PROCESSING, 2012, 7484 : 4 - 15
  • [26] User-Guided Rendering of Audio Objects Using an Interactive Genetic Algorithm
    Wilson, Alex
    Fazenda, Bruno M.
    JOURNAL OF THE AUDIO ENGINEERING SOCIETY, 2019, 67 (7-8): : 522 - 530
  • [27] User-Guided Dynamic Data Race Detection
    Markus Metzger
    Xinmin Tian
    Walfred Tedeschi
    International Journal of Parallel Programming, 2015, 43 : 159 - 179
  • [28] Surface remeshing with robust user-guided segmentation
    Khan D.
    Yan D.-M.
    Ding F.
    Zhuang Y.
    Zhang X.
    Computational Visual Media, 2018, 4 (2) : 113 - 122
  • [29] USER-GUIDED UNITS MODELED WITH PETRI NETWORKS
    GERHARD, E
    F&M-FEINWERKTECHNIK & MESSTECHNIK, 1990, 98 (04): : 151 - 154
  • [30] A Novel User-Guided Interface for Robot Search
    Kosti, Shahar
    Sarne, David
    Kaminka, Gal A.
    2014 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2014), 2014, : 3305 - 3310