A user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS)

被引:5
|
作者
Jenul, Anna [1 ]
Schrunner, Stefan [1 ]
Pilz, Jurgen [2 ]
Tomic, Oliver [1 ]
机构
[1] Norwegian Univ Life Sci, Dept Data Sci, As, Norway
[2] Univ Klagenfurt, Dept Stat, Klagenfurt, Austria
关键词
Ensemble feature selection; Bayesian model; Dirichlet-multinomial; User constraints; CANCER; CLASSIFICATION; DIAGNOSIS;
D O I
10.1007/s10994-022-06221-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection reduces the complexity of high-dimensional datasets and helps to gain insights into systematic variation in the data. These aspects are essential in domains that rely on model interpretability, such as life sciences. We propose a (U)ser-Guided (Bay)esian Framework for (F)eature (S)election, UBayFS, an ensemble feature selection technique embedded in a Bayesian statistical framework. Our generic approach considers two sources of information: data and domain knowledge. From data, we build an ensemble of feature selectors, described by a multinomial likelihood model. Using domain knowledge, the user guides UBayFS by weighting features and penalizing feature blocks or combinations, implemented via a Dirichlet-type prior distribution. Hence, the framework combines three main aspects: ensemble feature selection, expert knowledge, and side constraints. Our experiments demonstrate that UBayFS (a) allows for a balanced trade-off between user knowledge and data observations and (b) achieves accurate and robust results.
引用
收藏
页码:3897 / 3923
页数:27
相关论文
共 50 条
  • [1] A user-guided Bayesian framework for ensemble feature selection in life science applications (UBayFS)
    Anna Jenul
    Stefan Schrunner
    Jürgen Pilz
    Oliver Tomic
    Machine Learning, 2022, 111 : 3897 - 3923
  • [2] Tulipse: A Visualization Framework for User-Guided Parallelization
    Wong, Yi Wen
    Dubrownik, Tomasz
    Tang, Wai Teng
    Tan, Wen Jun
    Duan, Rubing
    Goh, Rick Siow Mong
    Kuo, Shyh-Hao
    Turner, Stephen John
    Wong, Weng-Fai
    EURO-PAR 2012 PARALLEL PROCESSING, 2012, 7484 : 4 - 15
  • [3] User-Guided Program Reasoning using Bayesian Inference
    Raghothaman, Mukund
    Kulkarni, Sulekha
    Heo, Kihong
    Naik, Mayur
    ACM SIGPLAN NOTICES, 2018, 53 (04) : 722 - 735
  • [4] User-guided program reasoning using Bayesian inference
    Raghothaman M.
    Kulkarni S.
    Heo K.
    Naik M.
    ACM SIGPLAN Notices, 2018, 53 (04): : 722 - 735
  • [5] User-Guided Program Reasoning using Bayesian Inference
    Raghothaman, Mukund
    Kulkarni, Sulekha
    Heo, Kihong
    Naik, Mayur
    PROCEEDINGS OF THE 39TH ACM SIGPLAN CONFERENCE ON PROGRAMMING LANGUAGE DESIGN AND IMPLEMENTATION, PLDI 2018, 2018, : 722 - 735
  • [6] Analysis of Decadal Climate Predictions with User-guided Hierarchical Ensemble Clustering
    Kappe, C. P.
    Boettinger, M.
    Leitte, H.
    COMPUTER GRAPHICS FORUM, 2019, 38 (03) : 505 - 515
  • [7] User-guided framework for scene generation using diffusion models
    Mendez, Alberto
    Prados, Adrian
    Fernandez, Noelia
    Espinoza, Gonzalo
    Barber, Ramon
    2024 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC, 2024, : 22 - 27
  • [8] Refinement-Cut: User-Guided Segmentation Algorithm for Translational Science
    Jan Egger
    Scientific Reports, 4
  • [9] Framework for the Ensemble of Feature Selection Methods
    Mera-Gaona, Maritza
    Lopez, Diego M.
    Vargas-Canas, Rubiel
    Neumann, Ursula
    APPLIED SCIENCES-BASEL, 2021, 11 (17):
  • [10] Refinement-Cut: User-Guided Segmentation Algorithm for Translational Science
    Egger, Jan
    SCIENTIFIC REPORTS, 2014, 4