Machine learning-assisted exploration of thermally conductive polymers based on high-throughput molecular dynamics simulations

被引:0
|
作者
Ma, Ruimin [1 ]
Zhang, Hanfeng [1 ]
Xu, Jiaxin [1 ]
Sun, Luning [1 ]
Hayashi, Yoshihiro [2 ]
Yoshida, Ryo [2 ]
Shiomi, Junichiro [3 ]
Wang, Jian-xun [1 ]
Luo, Tengfei [1 ,4 ]
机构
[1] Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN,46556, United States
[2] The Institute of Statistical Mathematics, Research Organization of Information and Systems, Tachikawa, Tokyo,190-8562, Japan
[3] Department of Mechanical Engineering, University of Tokyo, Bunkyo-ku, Tokyo,113-8656, Japan
[4] Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN,46556, United States
来源
Materials Today Physics | 2022年 / 28卷
关键词
All Open Access; Bronze;
D O I
暂无
中图分类号
学科分类号
摘要
Molecular dynamics
引用
收藏
相关论文
共 50 条
  • [31] Machine learning-assisted high-throughput screening of MOFs for efficient adsorption and separation of CF 4 /N 2
    Xu, Hong
    Mguni, Liberty L.
    Yao, Yali
    Hildebrandt, Diane
    Jewell, Linda L.
    Liu, Xinying
    JOURNAL OF CLEANER PRODUCTION, 2024, 461
  • [32] Machine learning-assisted high-throughput screening of transparent organic light-emitting diode anode materials
    Cui, Liying
    Li, Qing
    Zhang, Yanchang
    Zhang, Jiao
    Wang, Zhe
    Chen, Jiankang
    Zheng, Bing
    CHEMICAL SCIENCE, 2024, 15 (46) : 19375 - 19389
  • [33] Optimized performance of membrane-based desalination by high-throughput molecular dynamic simulations and machine learning analysis
    Cao, Jinji
    Xu, Zhaoqin
    Wei, Mingjie
    Li, Lihan
    Wu, Bin
    Wang, Yong
    DESALINATION, 2025, 593
  • [34] Correction: StreaMD: the toolkit for high-throughput molecular dynamics simulations
    Aleksandra Ivanova
    Olena Mokshyna
    Pavel Polishchuk
    Journal of Cheminformatics, 16 (1)
  • [35] Machine learning-assisted morphological profiling for high throughput screening in neuromuscular diseases
    Lorintiu, O.
    Young, J.
    Chapuis, V.
    Compere, L.
    Duchemin-Pelletier, E.
    Anselmo, S.
    Ventre, E.
    NEUROMUSCULAR DISORDERS, 2020, 30 : S67 - S67
  • [36] Machine learning-assisted design of metal-organic frameworks for hydrogen storage: A high-throughput screening and experimental approach
    Kim, Wan-Tae
    Lee, Weon-Gyu
    An, Hong-Eun
    Furukawa, Hiroyasu
    Jeong, Wooseok
    Kim, Sung-Chul
    Long, Jeffrey R.
    Jeong, Sohee
    Lee, Jung-Hoon
    CHEMICAL ENGINEERING JOURNAL, 2025, 507
  • [37] High-Throughput Experimentation and Machine Learning-Assisted Optimization of Iridium-Catalyzed Cross-Dimerization of Sulfoxonium Ylides
    Xu, Yougen
    Gao, Yadong
    Su, Lebin
    Wu, Haiting
    Tian, Hao
    Zeng, Majian
    Xu, Chunqiu
    Zhu, Xinwei
    Liao, Kuangbiao
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (48)
  • [38] Machine learning for high-throughput experimental exploration of metal halide perovskites
    Ahmadi, Mahshid
    Ziatdinov, Maxim
    Zhou, Yuanyuan
    Lass, Eric A.
    Kalinin, Sergei, V
    JOULE, 2021, 5 (11) : 2797 - 2822
  • [39] The deep-learning-based evolutionary framework trained by high-throughput molecular dynamics simulations for composite microstructure design
    Chen, Shaohua
    Xu, Nuo
    COMPOSITE STRUCTURES, 2023, 318
  • [40] High-throughput screening of tribological properties of monolayer films using molecular dynamics and machine learning
    Quach, Co D.
    Gilmer, Justin B.
    Pert, Daniel
    Mason-Hogans, Akanke
    Iacovella, Christopher R.
    Cummings, Peter T.
    McCabe, Clare
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (15):