Machine learning-assisted exploration of thermally conductive polymers based on high-throughput molecular dynamics simulations

被引:0
|
作者
Ma, Ruimin [1 ]
Zhang, Hanfeng [1 ]
Xu, Jiaxin [1 ]
Sun, Luning [1 ]
Hayashi, Yoshihiro [2 ]
Yoshida, Ryo [2 ]
Shiomi, Junichiro [3 ]
Wang, Jian-xun [1 ]
Luo, Tengfei [1 ,4 ]
机构
[1] Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN,46556, United States
[2] The Institute of Statistical Mathematics, Research Organization of Information and Systems, Tachikawa, Tokyo,190-8562, Japan
[3] Department of Mechanical Engineering, University of Tokyo, Bunkyo-ku, Tokyo,113-8656, Japan
[4] Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN,46556, United States
来源
Materials Today Physics | 2022年 / 28卷
关键词
All Open Access; Bronze;
D O I
暂无
中图分类号
学科分类号
摘要
Molecular dynamics
引用
收藏
相关论文
共 50 条
  • [21] Machine learning-assisted coarse-grained molecular dynamics for designing highly conductive polymer electrolytes
    Wang, Yanming
    Xie, Tian
    France-Lanord, Arthur
    Berkley, Arthur
    Johnson, Jeremiah
    Shao-Horn, Yang
    Grossman, Jeffrey
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [22] Machine Learning-Assisted High-Throughput Virtual Screening for On-Demand Customization of Advanced Energetic Materials
    Song, Siwei
    Wang, Yi
    Chen, Fang
    Yan, Mi
    Zhang, Qinghua
    ENGINEERING, 2022, 10 : 99 - 109
  • [23] Machine Learning-Assisted High-Throughput Virtual Screening for On-Demand Customization of Advanced Energetic Materials
    Siwei Song
    Yi Wang
    Fang Chen
    Mi Yan
    Qinghua Zhang
    Engineering, 2022, (03) : 99 - 109
  • [24] Synthesis of challenging cyclic tetrapeptides using machine learning-assisted high-throughput continuous flow technology
    Li, Chaoyi
    Yu, Jiaping
    Li, Wanchen
    Liao, Jingyuan
    Huang, Junrong
    Liu, Jiaying
    Zhao, Wei
    Zhang, Yinghe
    Zhu, Yuxiang
    You, Hengzhi
    ORGANIC CHEMISTRY FRONTIERS, 2025,
  • [25] Machine Learning-Assisted High-Throughput Virtual Screening for On-Demand Customization of Advanced Energetic Materials
    Siwei Song
    Yi Wang
    Fang Chen
    Mi Yan
    Qinghua Zhang
    Engineering, 2022, 10 (03) : 99 - 109
  • [26] Predicting the Young’s Modulus of Silicate Glasses using High-Throughput Molecular Dynamics Simulations and Machine Learning
    Kai Yang
    Xinyi Xu
    Benjamin Yang
    Brian Cook
    Herbert Ramos
    N. M. Anoop Krishnan
    Morten M. Smedskjaer
    Christian Hoover
    Mathieu Bauchy
    Scientific Reports, 9
  • [27] Predicting the Young's Modulus of Silicate Glasses using High-Throughput Molecular Dynamics Simulations and Machine Learning
    Yang, Kai
    Xu, Xinyi
    Yang, Benjamin
    Cook, Brian
    Ramos, Herbert
    Krishnan, N. M. Anoop
    Smedskjaer, Morten M.
    Hoover, Christian
    Bauchy, Mathieu
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [28] StreaMD: the toolkit for high-throughput molecular dynamics simulations
    Ivanova, Aleksandra
    Mokshyna, Olena
    Polishchuk, Pavel
    JOURNAL OF CHEMINFORMATICS, 2024, 16 (01):
  • [29] Machine-learning-assisted searching for thermally conductive polymers: A mini review
    Hu, Yinglong
    Wang, Qi
    Ma, Hao
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (12)
  • [30] High-throughput computation and machine learning of refractive index of polymers
    Mishra, Ankit
    Rajak, Pankaj
    Irie, Ayu
    Fukushima, Shogo
    Kalia, Rajiv K.
    Nakano, Aiichiro
    Nomura, Ken-ichi
    Shimojo, Fuyuki
    Vashishta, Priya
    APPLIED PHYSICS LETTERS, 2023, 123 (12)