A learning algorithm for parameters of automatic disturbances rejection controller

被引:0
|
作者
Wu, Lei [1 ,2 ]
Bao, Hong [1 ]
Du, Jing-Li [1 ]
Wang, Cong-Si [1 ]
机构
[1] Electronic Equipment Structure Key Laboratory of Education Ministry, Xidian University, Xi'an 710071, China
[2] 14th Institute of China Electronics Technology Group Corporation, Nanjing 210039, China
来源
关键词
Probability density function - Learning algorithms - Probability distributions - Cost functions - Disturbance rejection - Parameter estimation;
D O I
10.3724/SP.J.1004.2014.00556
中图分类号
学科分类号
摘要
Considering the special characteristics of the automatic disturbance rejection controller (ADRC), with emphasis on the parameters and strong coupling among them, an algorithm is presented in this paper for tuning the parameters of the ADRC automatically. Aiming at the minimization of the control performance function, the algorithm learns an optimal set of controller parameter values of the ADRC by cost function, updating each parameter of the controller within a bounded interval probability density distribution constantly and making the probability density of the optimal control parameter maximum. The algorithm is applied to an open-loop unstable system and the industrial mechatronic drives unit (IMDU), the results of simulation and experiment show its validity. Copyright © 2014 Acta Automatica Sinica. All rights reserved.
引用
收藏
页码:556 / 560
相关论文
共 50 条
  • [31] The parameters identification of the automatic control system with the controller
    Bobobekov, K. M.
    Troshina, G. V.
    Voevoda, A. A.
    XII INTERNATIONAL SCIENTIFIC AND TECHNICAL CONFERENCE APPLIED MECHANICS AND SYSTEMS DYNAMICS, 2019, 1210
  • [32] A kind of Optimizing Algorithm of Controller Parameters
    SchoolofInformationScienceandEngineeringNortheasternUniversityShenyangChinaWangGuichengXuXinheSchool of Information Engineering Shenyang Institute of Chemical Technology Shenyang ChinaJiangChanghong
    微计算机信息, 2006, (07) : 56 - 59
  • [33] Trajectory tracking controller for nonlinear systems with disturbances using iterative learning algorithm without resetting condition
    Bouakrif, Farah
    Bensidhoum, Tarek
    Zasadzinski, Michel
    2020 7TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT'20), VOL 1, 2020, : 517 - 522
  • [34] Hybrid Output Controller for Parametrically Uncertain Systems with Matching Harmonic Disturbances Rejection
    Bobtsov, Alexey
    Kolyubin, Sergey
    Pyrkin, Anton
    Gromov, Vladislav
    2014 22ND MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2014, : 91 - 96
  • [36] A CONTROLLER-DESIGN METHOD FOR REFERENCE TRACKING AND DISTURBANCES REJECTION WITH CONSTRAINED INPUT
    CHANG, KC
    FONG, IK
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 1994, 17 (02) : 193 - 203
  • [37] Auto-disturbances Rejection Controller Design of Maglev Wind Tunnel System
    Li, Yuan
    PROGRESS IN MECHATRONICS AND INFORMATION TECHNOLOGY, PTS 1 AND 2, 2014, 462-463 : 543 - 548
  • [38] Analysis and Implementation of an Adaptive Algorithm for the Rejection of Multiple Sinusoidal Disturbances
    Guo, Xiuyan
    Bodson, Marc
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2009, 17 (01) : 40 - 50
  • [39] A fast algorithm for automatic detection of ionospheric disturbances: DROT
    Efendi, Emre
    Arikan, Feza
    ADVANCES IN SPACE RESEARCH, 2017, 59 (12) : 2923 - 2933
  • [40] Automatic identification of activated sludge disturbances and assessment of operational parameters
    Amaral, Antonio L.
    Mesquita, Daniela P.
    Ferreira, Eugenio C.
    CHEMOSPHERE, 2013, 91 (05) : 705 - 710