Morphological impact of insulator on inkjet-printed transistor

被引:12
|
作者
Moon S.J. [1 ,2 ]
Robin M. [1 ,3 ]
Wenlin K. [1 ]
Yann M. [3 ]
Bae B.S. [2 ]
Mohammed-Brahim T. [1 ]
Jacques E. [1 ]
Harnois M. [1 ]
机构
[1] Institut d'Électronique et des Télécommunications de Rennes, Université Rennes 1, UMR CNRS 6164, Campus de Beaulieu, Rennes Cedex
[2] Department of Display Engineering, Hoseo University, Asan, Chungnam
[3] Institut des Sciences Chimiques de Rennes, Université de Rennes 1, CNRS UMR 6226, Rennes
来源
Flexible and Printed Electronics | 2017年 / 2卷 / 03期
关键词
Access resistance; Drop on demand; Inkjet printing; Organic field effect transistors; Polymeric insulator;
D O I
10.1088/2058-8585/aa8760
中图分类号
学科分类号
摘要
This study reports on the impact of electrodes (source and drain) and the insulator cross-sectional profile on the electrical behavior of printed organic field effect transistors (OFETs). Varying processing techniques, from classical lithography to inkjet printing, show different cross-sectional profiles. Indeed, due to the coffee stain effect (usually considered a drawback), the inkjet-printed insulator shows a wave-shaped profile although the spin-coated one is perfectly smooth. However, OFET electrical behavior is not drastically impacted by the insulator cross-sectional profile. Moreover, this study clearly demonstrates that independently of the insulator cross-sectional profile, OFETs fabricated with printed electrodes show the worst electrical characteristics. Consequently, this work clearly demonstrates that a challenging issue for the fabrication of efficient fully-printed OFETs relies on drain and source optimization (for instance, morphology or material). © 2017 IOP Publishing Ltd.
引用
收藏
相关论文
共 50 条
  • [41] Inkjet-printed reconfigurable and recyclable memristors on paper
    Chen, Jinrui
    Xiao, Mingfei
    Chen, Zesheng
    Khan, Sibghah
    Ghosh, Saptarsi
    Macadam, Nasiruddin
    Chen, Zhuo
    Zhou, Binghan
    Yun, Guolin
    Wilk, Kasia
    Psaltakis, Georgios
    Tian, Feng
    Fairclough, Simon
    Xu, Yang
    Oliver, Rachel
    Hasan, Tawfique
    INFOMAT, 2025,
  • [42] Inkjet-Printed Wireless Chemiresistive SensorsA Review
    Hartwig, Melinda
    Zichner, Ralf
    Joseph, Yvonne
    CHEMOSENSORS, 2018, 6 (04)
  • [43] Numerical simulation of the drying of inkjet-printed droplets
    Siregar, D. P.
    Kuerten, J. G. M.
    van der Geld, C. W. M.
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2013, 392 : 388 - 395
  • [44] Inkjet-printed monolayers as platforms for tethered polymers
    Sankhe, AY
    Booth, BD
    Wiker, NJ
    Kilbey, SM
    LANGMUIR, 2005, 21 (12) : 5332 - 5336
  • [45] Infrared bolometer is inkjet-printed on flexible plastic
    Cojocaru, Costel-Sorin
    LASER FOCUS WORLD, 2011, 47 (03): : 12 - 12
  • [46] Fully inkjet-printed dielectric elastomer actuators
    Gallucci, Giulio
    Wu, Yantong
    Tichem, Marcel
    Hunt, Andres
    ELECTROACTIVE POLYMER ACTUATORS AND DEVICES, EAPAD XXVI, 2024, 12945
  • [47] Inkjet-Printed Flexible Active Multilayered Structures
    Charles Trudeau
    Martin Bolduc
    Patrick Beaupré
    Patrice Topart
    Christine Alain
    Sylvain Cloutier
    MRS Advances, 2017, 2 (18) : 1015 - 1020
  • [48] Uniform inkjet-printed films with single solvent
    Wang, Juanhong
    Dong, Ting
    Zhong, Zhiming
    Zheng, Hua
    Xu, Wei
    Ying, Lei
    Wang, Jian
    Peng, Junbiao
    Cao, Yong
    THIN SOLID FILMS, 2018, 667 : 21 - 27
  • [49] Inkjet-printed perovskite distributed feedback lasers
    Mathies, Florian
    Brenner, Philipp
    Hernandez-Sosa, Gerardo
    Howard, Ian A.
    Paetzold, Ulrich W.
    Lemmer, Uli
    OPTICS EXPRESS, 2018, 26 (02): : A144 - A152
  • [50] Recent progress in inkjet-printed solar cells
    Karunakaran, Santhosh Kumar
    Arumugam, Gowri Manohari
    Yang, Wentao
    Ge, Sijie
    Khan, Saqib Nawaz
    Lin, Xianzhong
    Yang, Guowei
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (23) : 13873 - 13902